1
|
Liu JY, Zhang X, Tian BR. Selective modifications at the different positions of cyclodextrins: a review of strategies. Turk J Chem 2020; 44:261-278. [PMID: 33488156 PMCID: PMC7671212 DOI: 10.3906/kim-1910-43] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/21/2020] [Indexed: 12/19/2022] Open
Abstract
Cyclodextrins (CDs) are natural, nontoxic, and biodegradable macrocyclic oligosaccharides. As supramolecular hosts, CDs have numerous applications in many aspects. However, nonsubstituted CDs have the disadvantages of solubility, unspecific recognition sites, and weak interactions with guest molecules. Therefore, new CD-based derivatives are successfully designed, synthesized, and widely used in various fields. This contribution outlines the research progress in CD derivatives. In particular, this review emphasizes the synthesis and application of CDs modified through functionalization in definite positions, random substitution, and reconstruction of the skeleton. At the end of this review, a summary and future directions are presented.
Collapse
Affiliation(s)
- Jia Yue Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan P.R. China
| | - Xiao Zhang
- Pingliang Center for Disease Control and Prevention, Pingliang P.R. China
| | - Bing Ren Tian
- School of Pharmacy, Ningxia Medical University, Yinchuan P.R. China.,College of Chemistry and Chemical Engineering, Xinjiang University, Urumchi P.R. China
| |
Collapse
|
2
|
Kasinathan P, Lang C, Radhakrishnan S, Schnee J, D'Haese C, Breynaert E, Martens JA, Gaigneaux EM, Jonas AM, Fernandes AE. “Click” Silica‐Supported Sulfonic Acid Catalysts with Variable Acid Strength and Surface Polarity. Chemistry 2019; 25:6753-6762. [DOI: 10.1002/chem.201806186] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Palraj Kasinathan
- Institute of Condensed Matter and NanosciencesUCLouvain 1348 Louvain-la-Neuve Belgium
| | - Charlotte Lang
- Institute of Condensed Matter and NanosciencesUCLouvain 1348 Louvain-la-Neuve Belgium
| | - Sambhu Radhakrishnan
- Center for Surface Chemistry and Catalysis, Characterization and Application TeamKULeuven 3001 Leuven Belgium
| | - Josefine Schnee
- Institute of Condensed Matter and NanosciencesUCLouvain 1348 Louvain-la-Neuve Belgium
| | - Cécile D'Haese
- Institute of Condensed Matter and NanosciencesUCLouvain 1348 Louvain-la-Neuve Belgium
| | - Eric Breynaert
- Center for Surface Chemistry and Catalysis, Characterization and Application TeamKULeuven 3001 Leuven Belgium
| | - Johan A. Martens
- Center for Surface Chemistry and Catalysis, Characterization and Application TeamKULeuven 3001 Leuven Belgium
| | - Eric M. Gaigneaux
- Institute of Condensed Matter and NanosciencesUCLouvain 1348 Louvain-la-Neuve Belgium
| | - Alain M. Jonas
- Institute of Condensed Matter and NanosciencesUCLouvain 1348 Louvain-la-Neuve Belgium
| | - Antony E. Fernandes
- Institute of Condensed Matter and NanosciencesUCLouvain 1348 Louvain-la-Neuve Belgium
- Current address: Certech Rue Jules Bordet 7180 Seneffe Belgium
| |
Collapse
|
3
|
Moghadam A, Ijaz M, Asim MH, Mahmood A, Jelkmann M, Matuszczak B, Bernkop-Schnürch A. Non-ionic thiolated cyclodextrins - the next generation. Int J Nanomedicine 2018; 13:4003-4013. [PMID: 30022823 PMCID: PMC6045911 DOI: 10.2147/ijn.s153226] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Introduction The current study was aimed at developing a novel mucoadhesive thiolated cyclodextrin (CD) without ionizable groups and an intact ring backbone for drug delivery. Materials and methods Thiolated beta CD (β-CD) was prepared through bromine substitution of its hydroxyl groups followed by replacement to thiol groups using thiourea. The thiolated β-CD was characterized in vitro via dissolution studies, cytotoxicity studies, mucoadhesion studies on freshly excised porcine intestinal mucosa, and inclusion complex formation with miconazole nitrate. Results Thiolated β-CDs namely β-CD-SH600 and β-CD-SH1200 displayed 558.66 ± 78 and 1,163.45 ± 96 µmol thiol groups per gram of polymer, respectively. Stability constant (Kc) of 190 M-1 confirmed the inclusion complex formation of miconazole nitrate with β-CD-SH. Inclusion complexes of β-CD-SH600 and β-CD-SH1200 resulted in 157- and 257-fold increased solubility of miconazole nitrate, respectively. In addition, more than 80% of thiol groups were stable even after 6 hours at pH 5. Both β-CD-SH compounds showed at least 1.3-fold improved solubility in water. In contrast to cationic thiolated CDs of the first generation, both thiomers showed no significant cytotoxicity. The mucoadhesive properties of the new thiolated CDs were 39.73- and 46.37-fold improved, respectively. Conclusion These results indicate that β-CD-SH might provide a new favorable tool for delivery of poorly soluble drugs providing a prolonged residence time on mucosal surfaces.
Collapse
Affiliation(s)
- Ali Moghadam
- Institute of Biotechnology, College of Agriculture, Shiraz University, Shiraz, Iran.,Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria,
| | - Muhammad Ijaz
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria, .,Department of Pharmacy, COMSATS Institute of Information and Technology, Lahore, Pakistan
| | - Mulazim Hussain Asim
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria, .,Department of Pharmaceutics, Faculty of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Arshad Mahmood
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria, .,Department of Pharmacy, COMSATS Institute of Information Technology Abbottabad, Pakistan
| | - Max Jelkmann
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria,
| | - Barbara Matuszczak
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria,
| |
Collapse
|
4
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2013-2014. MASS SPECTROMETRY REVIEWS 2018; 37:353-491. [PMID: 29687922 DOI: 10.1002/mas.21530] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/29/2016] [Indexed: 06/08/2023]
Abstract
This review is the eighth update of the original article published in 1999 on the application of Matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2014. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly- saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2018 Wiley Periodicals, Inc. Mass Spec Rev 37:353-491, 2018.
Collapse
Affiliation(s)
- David J Harvey
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
5
|
Ijaz M, Griessinger JA, Mahmood A, Laffleur F, Bernkop-Schnürch A. Thiolated Cyclodextrin: Development of a Mucoadhesive Vaginal Delivery System for Acyclovir. J Pharm Sci 2017; 105:1714-1720. [PMID: 27112405 DOI: 10.1016/j.xphs.2016.03.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 11/29/2022]
Abstract
The objective of this study was the development of a mucoadhesive vaginal delivery system for acyclovir (Acv). Sodium-per-iodate (NaIO4) was used to introduce aldehyde substructures into beta-cyclodextrin (β-CD) by oxidative cleavage of vicinal diol bonds. Cysteamine was covalently attached to β-CD-CHO via reductive amination. Ellman's reagent was utilized for quantification of free thiol groups attached and resazurin assay was used for cytotoxicity studies. Mucoadhesive properties were evaluated on porcine vaginal mucosa in comparison to intestinal mucosa. Quantification of thiol groups revealed 851.84 ± 107, 1040.44 ± 132, and 1563.72 ± 171 μmol/g of free thiol groups attached to the β-CD-SH851, β-CD-SH1040, and β-CD-SH1563, respectively. β-CD-SH derivatives at concentrations of 0.5% (m/v) did not show significant reduction of viability of Caco-2 cells within 24 h. Furthermore, water solubility of β-CD-SH1563 was improved 7.6-fold in comparison to unmodified β-CD. β-CD-SH851, β-CD-SH1040, and β-CD-SH1563 showed 5.84-, 15.95-, and 17.14-fold improved mucoadhesive properties on porcine vaginal mucosa and 3-, 12.47-, and 32.13-fold on porcine intestinal mucosa, respectively. Inclusion complex of Acv with β-CD-SH1563 resulted in significantly improved drug dissolution. According to the results, β-CD-SH derivatives might be promising new tools for local vaginal delivery of Acv.
Collapse
Affiliation(s)
- Muhammad Ijaz
- Department of Pharmaceutical Technology, Center for Chemistry and Biomedicine, Institute of Pharmacy, University of Innsbruck, Innsbruck 6020, Austria
| | | | - Arshad Mahmood
- Department of Pharmaceutical Technology, Center for Chemistry and Biomedicine, Institute of Pharmacy, University of Innsbruck, Innsbruck 6020, Austria
| | - Flavia Laffleur
- Department of Pharmaceutical Technology, Center for Chemistry and Biomedicine, Institute of Pharmacy, University of Innsbruck, Innsbruck 6020, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Center for Chemistry and Biomedicine, Institute of Pharmacy, University of Innsbruck, Innsbruck 6020, Austria.
| |
Collapse
|
6
|
Gu H, Chen X, Yu Q, Liu X, Zhan W, Chen H, Brash JL. A multifunctional surface for blood contact with fibrinolytic activity, ability to promote endothelial cell adhesion and inhibit smooth muscle cell adhesion. J Mater Chem B 2017; 5:604-611. [DOI: 10.1039/c6tb02808j] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A multifunctional surface with fibrinolytic activity, the ability to promote endothelial cell and inhibit smooth muscle cell adhesion was realized.
Collapse
Affiliation(s)
- Hao Gu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Xianshuang Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Xiaoli Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Wenjun Zhan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - John L. Brash
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| |
Collapse
|
7
|
He XP, Zeng YL, Zang Y, Li J, Field RA, Chen GR. Carbohydrate CuAAC click chemistry for therapy and diagnosis. Carbohydr Res 2016; 429:1-22. [DOI: 10.1016/j.carres.2016.03.022] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 12/12/2022]
|
8
|
Preparation of Well-Defined Propargyl-Terminated Tetra-Arm Poly(N-isopropylacrylamide)s and Their Click Hydrogels Crosslinked with β-cyclodextrin. Polymers (Basel) 2016; 8:polym8040093. [PMID: 30979203 PMCID: PMC6432514 DOI: 10.3390/polym8040093] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 02/28/2016] [Accepted: 03/14/2016] [Indexed: 01/05/2023] Open
Abstract
As an important class of reversible deactivation radical polymerization (RDRP), reversible addition fragmentation chain transfer (RAFT) polymerization has attracted great attention attributed to its facile and flexible features to prepare well-defined polymers with different complex structures. In addition, the combination of RAFT with click chemistry provides more effective strategies to fabricate advanced functional materials. In this work, a series of temperature responsive tetra-arm telechelic poly(N-isopropylacrylamide)s (PNIPAs) with propargyl end groups were prepared for the first time through RAFT and subsequent aminolysis/Michael addition modification. The temperature sensitivities of their aqueous solutions were researched via turbidity measurement. It was found that the phase transition temperature of obtained PNIPAs increased with their molecular weights ascribed to their distinctions in the hydrophobic/hydrophilic balance. Subsequently, β-cyclodextrin (β-CD) functionalized with azide moieties was used to crosslink the prepared propargyl-terminated tetra-arm PNIPAs through click chemistry, fabricating corresponding hydrogels with thermoresponse. Similar to their precursors, the hydrogels demonstrated the same dependence of volume phase transition temperature (VPTT) on their molecular weights. In addition, the incorporation of β-CD and the residual groups besides crosslinking may provide a platform for imparting additional functions such as inclusion and adsorption as well as further functionalization.
Collapse
|
9
|
Ijaz M, Matuszczak B, Rahmat D, Mahmood A, Bonengel S, Hussain S, Huck CW, Bernkop-Schnürch A. Synthesis and characterization of thiolated β-cyclodextrin as a novel mucoadhesive excipient for intra-oral drug delivery. Carbohydr Polym 2015; 132:187-95. [DOI: 10.1016/j.carbpol.2015.06.073] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 11/27/2022]
|
10
|
Le HT, Jeon HM, Lim CW, Kim TW. Synthesis, Cytotoxicity, and Phase-Solubility Study of Cyclodextrin Click Clusters. J Pharm Sci 2014; 103:3183-9. [DOI: 10.1002/jps.24107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/28/2014] [Accepted: 07/08/2014] [Indexed: 11/05/2022]
|