1
|
Lee J, Ahn E, Kim SY, Shin Y, Ahn S, Sung J, Kim H, Cho E, Jung S, Park S. Inclusion complexes of cysteinyl β-cyclodextrin with baicalein restore collagen synthesis in fibroblast cells following ultraviolet exposure. J Cell Biochem 2018; 120:4032-4043. [PMID: 30269381 DOI: 10.1002/jcb.27687] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 08/27/2018] [Indexed: 01/07/2023]
Abstract
Baicalein, a bioactive flavonoid, has poor water solubility, thereby limiting its use in a wide range of biological applications. In the present study, we used inclusion complexes of cysteinyl β-cyclodextrin (β-CD) with baicalein to enhance the stability and solubility of baicalein in aqueous solution. We examined the effects of inclusion complexes of cysteinyl β-CD on collagen synthesis following ultraviolet (UV) irradiation, as well as the mechanisms underlying its effects. Our findings demonstrated that baicalein significantly restored collagen synthesis in the UV-exposed human fibroblast Hs68 cells. In addition, synthetic cysteine functionalized β-CDs were found to promote baicalein-induced collagen synthesis. Inclusion complexes of cysteinyl β-CDs with baicalein significantly upregulated the protein expression of type I collagen and activated the transcription of type I, II, and III collagen. Inclusion complexes of cysteinyl β-CDs with baicalein also downregulated matrix metalloproteinase -1 and -3, and α-smooth muscle actin expression. In addition, inclusion complexes of cysteinyl β-CDs with baicalein attenuated the expression of caveolin-1, but this treatment enhanced the UV-induced phosphorylation of Smad in the transforming growth factor-β pathway. These results suggested that the newly synthesized derivative of CD can be used as a complexing agent to enhance the bioavailability of flavonoids such as baicalein, especially in restoring collagen synthesis.
Collapse
Affiliation(s)
- Joomin Lee
- Department of Food and Nutrition, Chosun University, Gwangju, Korea
| | - Eunsook Ahn
- Department of Applied Chemistry, Dongduk Women's University, Seoul, Korea
| | - Seon-Y Kim
- Department of Applied Chemistry, Dongduk Women's University, Seoul, Korea
| | - Yujeong Shin
- Department of Applied Chemistry, Dongduk Women's University, Seoul, Korea
| | - Seunghyun Ahn
- Department of Applied Chemistry, Dongduk Women's University, Seoul, Korea
| | - Jiha Sung
- Department of Applied Chemistry, Dongduk Women's University, Seoul, Korea
| | - Hwanhee Kim
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, Seoul, Korea
| | - Eunae Cho
- Department of Systems Biotechnology, Center for Biotechnology Research in UBITA (CBRU), Institute for Ubiquitous Information Technology and Applications (UBITA), Konkuk University, Seoul, Korea
| | - Seunho Jung
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, Seoul, Korea.,Department of Systems Biotechnology, Center for Biotechnology Research in UBITA (CBRU), Institute for Ubiquitous Information Technology and Applications (UBITA), Konkuk University, Seoul, Korea
| | - Seyeon Park
- Department of Applied Chemistry, Dongduk Women's University, Seoul, Korea
| |
Collapse
|
2
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2013-2014. MASS SPECTROMETRY REVIEWS 2018; 37:353-491. [PMID: 29687922 DOI: 10.1002/mas.21530] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/29/2016] [Indexed: 06/08/2023]
Abstract
This review is the eighth update of the original article published in 1999 on the application of Matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2014. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly- saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2018 Wiley Periodicals, Inc. Mass Spec Rev 37:353-491, 2018.
Collapse
Affiliation(s)
- David J Harvey
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
3
|
Biotinylated Cyclooligosaccharides for Paclitaxel Solubilization. Molecules 2018; 23:molecules23010090. [PMID: 29301309 PMCID: PMC6017118 DOI: 10.3390/molecules23010090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/22/2017] [Accepted: 12/28/2017] [Indexed: 12/13/2022] Open
Abstract
The poor water solubility of paclitaxel causes significant problems in producing cancer therapeutic formulations. Here, we aimed to solubilize paclitaxel using biocompatible cyclic carbohydrates. Generally recognized as safe, labeled β-cyclodextrin (β-CD), a cyclic α-1,4-glucan consisting of seven glucoses, was prepared, and bio-sourced cyclosophoraoses (CyS), which are unbranched cyclic β-1,2-glucans with 17-23 glucose units, were purified using various chromatographic methods from Rhizobium leguminosarum cultural broth. For effective targeting, CyS and β-CD were modified with a biotinyl moiety in a reaction of mono-6-amino CyS and mono-6-amino-β-CD with N-hydroxysuccinimide ester of biotinamidohexanoic acid. Interestingly, the aqueous solubility of paclitaxel was enhanced 10.3- and 3.7-fold in the presence of biotinyl CyS and biotinyl β-CD, respectively. These findings suggest that biotin-appended cyclooligosaccharides can be applied to improve the delivery of paclitaxel.
Collapse
|
4
|
Supramolecular structure of glibenclamide and β-cyclodextrins complexes. Int J Pharm 2017; 530:377-386. [DOI: 10.1016/j.ijpharm.2017.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/21/2017] [Accepted: 08/01/2017] [Indexed: 11/22/2022]
|
5
|
Label-Free Colorimetric Detection of Influenza Antigen Based on an Antibody-Polydiacetylene Conjugate and Its Coated Polyvinylidene Difluoride Membrane. Polymers (Basel) 2017; 9:polym9040127. [PMID: 30970806 PMCID: PMC6432067 DOI: 10.3390/polym9040127] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/25/2017] [Accepted: 03/27/2017] [Indexed: 12/28/2022] Open
Abstract
This study presents an antibody-conjugated polydiacetylene (PDA) and its coated polyvinylidene difluoride (PVDF) membrane. The M149 antibody was hybridized to nano-vesicles consisting of pentacosa-10,12-diynoic acid (PCDA) and dimyristoylphosphatidylcholine (DMPC). After photo-polymerization at 254 nm, the effects on the PDA by antigenic injection were investigated with UV-vis spectroscopy, fluorescence spectroscopy, dynamic light scattering and transmission electron microscopy. Because PDA, an alternating ene-yne molecule, induces a blue-to-red color transition and an interesting fluorescent response by the distortion of its backbone, the biomolecular recognition of an antibody–antigen can be converted into an optical and fluorescent signal. Thus, an influenza antigen was successfully detected with the proposed label-free method. Furthermore, the vesicular system was improved by coating it onto a membrane type sensing platform for its stability and portability. The proposed antibody-PDA composite PVDF membrane has potential for rapid, easy and selective visualization of the influenza virus.
Collapse
|
6
|
A synthetic encapsulating emulsifier using complex-forming pentacosadiynoyl cyclosophoraoses (cyclic β-(1, 2)- d -glucan). J IND ENG CHEM 2016. [DOI: 10.1016/j.jiec.2016.08.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Kim H, Hu Y, Jeong D, Jun BH, Cho E, Jung S. Synthesis, Characterization, and Retinol Stabilization of Fatty Amide-β-cyclodextrin Conjugates. Molecules 2016; 21:molecules21070963. [PMID: 27455224 PMCID: PMC6273423 DOI: 10.3390/molecules21070963] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/19/2016] [Accepted: 07/20/2016] [Indexed: 11/24/2022] Open
Abstract
Amphiphilic cyclodextrin (CD) has been the object of growing scientific attention because of its two recognition sites, the cavity and the apolar heart, formed by self-assembly. In the present study, mono[6-deoxy-6-(octadecanamido)]-β-CD and mono[6-deoxy-6-(octadecenamido)]-β-CD were successfully synthesized by reacting mono-6-amino-6-deoxy-β-CD with N-hydroxysuccinimide esters of corresponding fatty acids in DMF. The structures were analyzed using nuclear magnetic resonance spectroscopy and mass spectrometry. The amphiphilic β-CDs were able to form self-assembled nano-vesicles in water, and the supramolecular architectures were characterized using fluorescence spectroscopy, dynamic light scattering, and transmission electron microscopy. Using the cavity-type nano-vesicles, all-trans-retinol was efficiently encapsulated; it was then stabilized against the photo-degradation. Therefore, the present fatty amide-β-CD conjugate will be a potential molecule for carrier systems in cosmetic and pharmaceutical applications.
Collapse
Affiliation(s)
- Hwanhee Kim
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| | - Yiluo Hu
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| | - Daham Jeong
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| | - Eunae Cho
- Center for Biotechnology Research in UBITA (CBRU), Institute for Ubiquitous Information Technology and Applications (UBITA), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| | - Seunho Jung
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
- Center for Biotechnology Research in UBITA (CBRU), Institute for Ubiquitous Information Technology and Applications (UBITA), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| |
Collapse
|
8
|
Kim H, Yiluo H, Park S, Lee JY, Cho E, Jung S. Characterization and Enhanced Antioxidant Activity of the Cysteinyl β-Cyclodextrin-Baicalein Inclusion Complex. Molecules 2016; 21:molecules21060703. [PMID: 27240335 PMCID: PMC6273330 DOI: 10.3390/molecules21060703] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 05/20/2016] [Accepted: 05/25/2016] [Indexed: 12/27/2022] Open
Abstract
Baicalein is a type of flavonoid isolated from the roots of a medicinal plant, Scutellaria baicalensis. Although it has attracted considerable attention due to its antiviral, anti-tumor, and anti-inflammatory activities, its limited aqueous solubility inhibits the clinical application of this flavonoid. The present study aimed to prepare and characterize a host-guest complex in an effort to improve the solubility and antioxidant activity of baicalein. The host molecule is a macrocyclic β-cyclodextrin (β-CD) functionalized with cysteine for a synergetic effect. The structure of the synthesized cysteinyl β-CD was analyzed using nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry. The inclusion complex with baicalein was studied by UV-vis, NMR spectroscopy, scanning electron microscopy, and X-ray powder diffractometry. The formed cysteinyl β-CD/baicalein inclusion complex efficiently improved the solubility and antioxidant ability of baicalein. Therefore, we suggest that the present cysteinyl β-CD is a potential host molecule for inclusion complexation and for bioavailability augmentation.
Collapse
Affiliation(s)
- Hwanhee Kim
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| | - Hu Yiluo
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| | - Seyeon Park
- Department of Applied Chemistry, Dongduk Women's University, Seoul 136-714, Korea.
| | - Jae Yung Lee
- Department of Biological Science, Mokpo National University, Jeonnam 534-729, Korea.
| | - Eunae Cho
- Center for Biotechnology Research in UBITA (CBRU), Institute for Ubiquitous Information Technology and Applications (UBITA), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| | - Seunho Jung
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
- Center for Biotechnology Research in UBITA (CBRU), Institute for Ubiquitous Information Technology and Applications (UBITA), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| |
Collapse
|
9
|
Cho E, Tahir MN, Choi JM, Kim H, Yu JH, Jung S. Novel magnetic nanoparticles coated by benzene- and β-cyclodextrin-bearing dextran, and the sorption of polycyclic aromatic hydrocarbon. Carbohydr Polym 2015; 133:221-8. [DOI: 10.1016/j.carbpol.2015.06.089] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/05/2015] [Accepted: 06/30/2015] [Indexed: 01/01/2023]
|