1
|
Comparative genome characterization of Echinicola marina sp. nov., isolated from deep-sea sediment provide insight into carotenoid biosynthetic gene cluster evolution. Sci Rep 2021; 11:24188. [PMID: 34921217 PMCID: PMC8683446 DOI: 10.1038/s41598-021-03683-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 12/02/2021] [Indexed: 11/23/2022] Open
Abstract
Echinicola, carotenoid-pigmented bacteria, are isolated from various hypersaline environments. Carotenoid accumulation in response to salt stress can stabilize the cell membrane in order to survive. A pink-colored strain SCS 3-6 was isolated from the deep-sea sediment of the South China Sea. Growth was found to occur at 10-45 °C. The strain could tolerate 10% (w/v) NaCl concentration and grow at pH 5-9. The complete genome of SCS 3-6 comprises 5053 putative genes with a total 5,693,670 bp and an average G + C content of 40.11 mol%. The 16S rRNA gene sequence analysis indicated that strain SCS 3-6 was affiliated with the genus Echinicola, with the closely strains were Echinicola arenosa CAU 1574T (98.29%)and Echinicola shivajiensis AK12T (97.98%). For Echinicola species with available genome sequences, pairwise comparisons for average nucleotide identity (ANI) and in silico DNA-DNA hybridization (DDH) revealed ANIb values from 70.77 to 74.71%, ANIm values from 82.72 to 88.88%, and DDH values from 18.00 to 23.40%. To identify their genomic features, we compared their genomes with those of other Echinicola species. Phylogenetic analysis showed that strain SCS 3-6 formed a monophyletic clade. Genomic analysis revealed that strain SCS 3-6 possessed a complete synthetic pathway of carotenoid and speculated that the production was astaxanthin. Based on phenotypic and genotypic analyses in this study, strain SCS 3-6 is considered to represent a novel species of the genus Echinicola for which the name Echinicola marina sp. nov. is proposed. The type strain is SCS 3-6T (= GDMCC 1.2220T = JCM 34403T).
Collapse
|
2
|
Pither MD, Mantova G, Scaglione E, Pagliuca C, Colicchio R, Vitiello M, Chernikov OV, Hua KF, Kokoulin MS, Silipo A, Salvatore P, Molinaro A, Di Lorenzo F. The Unusual Lipid A Structure and Immunoinhibitory Activity of LPS from Marine Bacteria Echinicola pacifica KMM 6172 T and Echinicola vietnamensis KMM 6221 T. Microorganisms 2021; 9:microorganisms9122552. [PMID: 34946153 PMCID: PMC8707317 DOI: 10.3390/microorganisms9122552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/01/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022] Open
Abstract
Gram-negative bacteria experiencing marine habitats are constantly exposed to stressful conditions dictating their survival and proliferation. In response to these selective pressures, marine microorganisms adapt their membrane system to ensure protection and dynamicity in order to face the highly mutable sea environments. As an integral part of the Gram-negative outer membrane, structural modifications are commonly observed in the lipopolysaccharide (LPS) molecule; these mainly involve its glycolipid portion, i.e., the lipid A, mostly with regard to fatty acid content, to counterbalance the alterations caused by chemical and physical agents. As a consequence, unusual structural chemical features are frequently encountered in the lipid A of marine bacteria. By a combination of data attained from chemical, MALDI-TOF mass spectrometry (MS), and MS/MS analyses, here, we describe the structural characterization of the lipid A isolated from two marine bacteria of the Echinicola genus, i.e., E. pacifica KMM 6172T and E. vietnamensis KMM 6221T. This study showed for both strains a complex blend of mono-phosphorylated tri- and tetra-acylated lipid A species carrying an additional sugar moiety, a d-galacturonic acid, on the glucosamine backbone. The unusual chemical structures are reflected in a molecule that only scantly activates the immune response upon its binding to the LPS innate immunity receptor, the TLR4-MD-2 complex. Strikingly, both LPS potently inhibited the toxic effects of proinflammatory Salmonella LPS on human TLR4/MD-2.
Collapse
Affiliation(s)
- Molly Dorothy Pither
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy; (M.D.P.); (A.S.); (A.M.)
| | - Giuseppe Mantova
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini n 5, 80131 Naples, Italy; (G.M.); (E.S.); (C.P.); (R.C.); (M.V.); (P.S.)
| | - Elena Scaglione
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini n 5, 80131 Naples, Italy; (G.M.); (E.S.); (C.P.); (R.C.); (M.V.); (P.S.)
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
| | - Chiara Pagliuca
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini n 5, 80131 Naples, Italy; (G.M.); (E.S.); (C.P.); (R.C.); (M.V.); (P.S.)
| | - Roberta Colicchio
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini n 5, 80131 Naples, Italy; (G.M.); (E.S.); (C.P.); (R.C.); (M.V.); (P.S.)
| | - Mariateresa Vitiello
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini n 5, 80131 Naples, Italy; (G.M.); (E.S.); (C.P.); (R.C.); (M.V.); (P.S.)
| | - Oleg V. Chernikov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159/2, Prospect 100 Let Vladivostoku, 690022 Vladivostok, Russia; (O.V.C.); (M.S.K.)
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, No. 1, Sec. 1, Shen-Lung Road, Ilan 26099, Taiwan;
| | - Maxim S. Kokoulin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159/2, Prospect 100 Let Vladivostoku, 690022 Vladivostok, Russia; (O.V.C.); (M.S.K.)
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy; (M.D.P.); (A.S.); (A.M.)
- Task Force on Microbiome Studies, University of Naples Federico II, 80126 Naples, Italy
| | - Paola Salvatore
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini n 5, 80131 Naples, Italy; (G.M.); (E.S.); (C.P.); (R.C.); (M.V.); (P.S.)
- Task Force on Microbiome Studies, University of Naples Federico II, 80126 Naples, Italy
- CEINGE-Biotecnologie Avanzate s.c.ar.l., Via G. Salvatore n 436, 80131 Naples, Italy
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy; (M.D.P.); (A.S.); (A.M.)
- Task Force on Microbiome Studies, University of Naples Federico II, 80126 Naples, Italy
| | - Flaviana Di Lorenzo
- Task Force on Microbiome Studies, University of Naples Federico II, 80126 Naples, Italy
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
- Correspondence:
| |
Collapse
|
3
|
Tomshich SV, Kokoulin MS, Kalinovsky AI, Nedashkovskaya OI, Komandrova NA. Structure of the O-specific polysaccharide from a marine bacterium Echinicola pacifica КММ 6172Т containing 2,3-diacetamido-2,3-dideoxy-D-glucuronic acid. Carbohydr Res 2016; 425:22-7. [DOI: 10.1016/j.carres.2016.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/03/2016] [Accepted: 03/04/2016] [Indexed: 10/22/2022]
|
4
|
Wu Z, Zhao G, Li T, Qu J, Guan W, Wang J, Ma C, Li X, Zhao W, Wang PG, Li L. Biochemical characterization of an α1,2-colitosyltransferase from Escherichia coli O55:H7. Glycobiology 2015; 26:493-500. [PMID: 26703456 DOI: 10.1093/glycob/cwv169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/16/2015] [Indexed: 01/17/2023] Open
Abstract
Colitose, also known as 3,6-dideoxy-L-galactose or 3-deoxy-L-fucose, is one of only five naturally occurring 3,6-dideoxyhexoses. Colitose was found in lipopolysaccharide of a number of infectious bacteria, including Escherichia coli O55 & O111 and Vibrio cholera O22 & O139. To date, no colitosyltransferase (ColT) has been characterized, probably due to the inaccessibility of the sugar donor, GDP-colitose. In this study, starting with chemically prepared colitose, 94.6 mg of GDP-colitose was prepared via a facile and efficient one-pot two-enzyme system involving an L-fucokinase/GDP-L-Fuc pyrophosphorylase and an inorganic pyrophosphatase (EcPpA). WbgN, a putative ColT from E. coliO55:H5 was then cloned, overexpressed, purified and biochemically characterized by using GDP-colitose as a sugar donor. Activity assay and structural identification of the synthetic product clearly demonstrated that wbgN encodes an α1,2-ColT. Biophysical study showed that WbgN does not require metal ion, and is highly active at pH 7.5-9.0. In addition, acceptor specificity study indicated that WbgN exclusively recognizes lacto-N-biose (Galβ1,3-GlcNAc). Most interestingly, it was found that WbgN exhibits similar activity toward GDP-l-Fuc (kcat/Km= 9.2 min(-1)mM(-1)) as that toward GDP-colitose (kcat/Km= 12 min(-1)mM(-1)). Finally, taking advantage of this, type 1 H-antigen was successfully synthesized in preparative scale.
Collapse
Affiliation(s)
- Zhigang Wu
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Guohui Zhao
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Tiehai Li
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Jingyao Qu
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Wanyi Guan
- College of Life Science, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Jiajia Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 30071, China
| | - Cheng Ma
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Xu Li
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Wei Zhao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 30071, China
| | - Peng G Wang
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 30071, China
| | | |
Collapse
|