1
|
Fontana C, Weintraub A, Widmalm G. Structural elucidation of the O-antigen polysaccharide from shigatoxin-producing E. coli O179 using genetic information, NMR spectroscopy and the CASPER program. Carbohydr Res 2025; 550:109382. [PMID: 39848011 DOI: 10.1016/j.carres.2025.109382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/09/2025] [Accepted: 01/09/2025] [Indexed: 01/25/2025]
Abstract
The serological properties of the O-antigen polysaccharide region of the lipopolysaccharides are used to differentiate E. coli strains into serogroups. In this study, we report the structure elucidation of the O-specific chain of E. coli O179 using NMR data, the program CASPER and analysis of biosynthetic information available in the E. coli O-antigen Database (ECODAB). The presence of genes that encode enzymes involved in the biosynthesis of the GDP-Man and UDP-GlcA within the O-antigen gene cluster of the bacteria indicates that the corresponding residues could be present in the polysaccharide. Furthermore, the occurrence of four genes that encode for glycosyltransferases indicates that the polysaccharide is composed of pentasaccharide repeating units; a bioinformatics approach based on predictive glycosyltransferase functions present in ECODAB revealed that the β-d-Manp-(1→4)-β-d-Manp-(1→3)-d-GlcpNAc structural element could be present in the O-specific chain. NMR spectroscopy data obtained from homonuclear and heteronuclear 2D NMR spectra (1H,1H-TOCSY, 1H,13C-HSQC, 1H,13C-H2BC and 1H,13C-HMBC) were analyzed using the CASPER program, revealing the following arrangement of monosaccharide residues as the most probable structure: →4)-α-d-GlcpA-(1→3)-[β-d-Glcp-(1→2)]β-d-Manp-(1→4)-β-d-Manp-(1→3)-β-d-GlcpNAc-(1→, which was further confirmed using 2D homonuclear 1H,1H-COSY and 1H,1H-NOESY spectra. The functions of the α-gluconosyltransferase and the β-glucosyltransferase were predicted using structural alignment of AlphaFold-predicted 3D structures. This O-antigen polysaccharide shares structural similarities with those of E. coli O6 and O188, S. boydii type 16, and the capsular polysaccharide of E. coli K43, explaining the serological cross-reactivities observed with strains belonging these O- and K-antigen groups.
Collapse
Affiliation(s)
- Carolina Fontana
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91, Stockholm, Sweden; Departamento de Química del Litoral, CENUR Litoral Norte, Universidad de la República, Ruta 3 Km 363, Paysandú, 60000, Uruguay
| | - Andrej Weintraub
- Karolinska Institute, Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska University Hospital, S-141 86, Stockholm, Sweden
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91, Stockholm, Sweden.
| |
Collapse
|
2
|
Liu B, Furevi A, Perepelov AV, Guo X, Cao H, Wang Q, Reeves PR, Knirel YA, Wang L, Widmalm G. Structure and genetics of Escherichia coli O antigens. FEMS Microbiol Rev 2020; 44:655-683. [PMID: 31778182 PMCID: PMC7685785 DOI: 10.1093/femsre/fuz028] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 11/22/2019] [Indexed: 02/07/2023] Open
Abstract
Escherichia coli includes clonal groups of both commensal and pathogenic strains, with some of the latter causing serious infectious diseases. O antigen variation is current standard in defining strains for taxonomy and epidemiology, providing the basis for many serotyping schemes for Gram-negative bacteria. This review covers the diversity in E. coli O antigen structures and gene clusters, and the genetic basis for the structural diversity. Of the 187 formally defined O antigens, six (O31, O47, O67, O72, O94 and O122) have since been removed and three (O34, O89 and O144) strains do not produce any O antigen. Therefore, structures are presented for 176 of the 181 E. coli O antigens, some of which include subgroups. Most (93%) of these O antigens are synthesized via the Wzx/Wzy pathway, 11 via the ABC transporter pathway, with O20, O57 and O60 still uncharacterized due to failure to find their O antigen gene clusters. Biosynthetic pathways are given for 38 of the 49 sugars found in E. coli O antigens, and several pairs or groups of the E. coli antigens that have related structures show close relationships of the O antigen gene clusters within clades, thereby highlighting the genetic basis of the evolution of diversity.
Collapse
Affiliation(s)
- Bin Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjing 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, 23 Hongda Street, TEDA, Tianjin 300457, China
| | - Axel Furevi
- Department of Organic Chemistry, Arrhenius Laboratory, Svante Arrhenius väg 16C, Stockholm University, S-106 91 Stockholm, Sweden
| | - Andrei V Perepelov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, Moscow, Russia
| | - Xi Guo
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjing 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, 23 Hongda Street, TEDA, Tianjin 300457, China
| | - Hengchun Cao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjing 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, 23 Hongda Street, TEDA, Tianjin 300457, China
| | - Quan Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjing 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, 23 Hongda Street, TEDA, Tianjin 300457, China
| | - Peter R Reeves
- School of Molecular and Microbial Bioscience, University of Sydney, 2 Butilin Ave, Darlington NSW 2008, Sydney, Australia
| | - Yuriy A Knirel
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, Moscow, Russia
| | - Lei Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjing 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, 23 Hongda Street, TEDA, Tianjin 300457, China
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Svante Arrhenius väg 16C, Stockholm University, S-106 91 Stockholm, Sweden
| |
Collapse
|
3
|
Ståhle J, Fontana C, Weintraub A, Widmalm G. Elucidation of the O-antigen structure of Escherichia coli O63. Glycobiology 2019; 29:179-187. [PMID: 30346540 DOI: 10.1093/glycob/cwy098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 10/18/2018] [Indexed: 11/14/2022] Open
Abstract
The structure of the O-antigen polysaccharide (PS) from the Shiga-toxin producing Escherichia coli O63 has been elucidated using a combination of bioinformatics, component analyses and NMR spectroscopy. The O-antigen is comprised of tetrasaccharide repeating units with the following structure: →2)-β-d-Quip3N(d-allo-ThrAc)-(1→2)-β-d-Ribf-(1→4)-β-d-Galp-(1→3)-α-d-GlcpNAc-(1→ in which the N-acetylated d-allo-threonine is amide-linked to position 3 of the 3-amino-3-deoxy-d-Quip sugar residue. The presence of a predicted flippase and polymerase encoded in the O63 gene cluster is consistent with the Wzx/Wzy biosynthetic pathway and consequently the biological repeating unit has likely an N-acetyl-d-glucosamine residue at its reducing end. A bioinformatics approach based on predictive glycosyltransferase function present in ECODAB (E. coli O-antigen database) suggested the structural element β-d-Galp-(1→3)-d-GlcpNAc in the O-antigen. Notably, multiple gene sequence alignment of fdtA and qdtA from E. coli to that in E. coli O63 resulted in discrimination between the two, confirmation of the latter in E. coli O63, and consequently, together with qdtB, biosynthesis of dTDP-d-Quip3N. The E. coli O63 O-antigen polysaccharide differs in two aspects from that of E. coli O114 where the latter carries instead an l-serine residue, and the glycosidic linkage positions to and from the Quip3N residue are both changed. The structural characterization of the O63 antigen repeat supports the predicted functional assignment of the O-antigen cluster genes.
Collapse
Affiliation(s)
- Jonas Ståhle
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, Sweden
| | - Carolina Fontana
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, Sweden
| | - Andrej Weintraub
- Karolinska Institute, Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, Sweden
| |
Collapse
|