1
|
Ghosh B, Bhattacharjee N, Podilapu AR, Puri K, Kulkarni SS. Total Synthesis of the Repeating Units of O-Specific Polysaccharide of Pseudomonas chlororaphis subsp. aureofaciens UCM B-306 via One-Pot Glycosylation. Org Lett 2022; 24:3696-3701. [PMID: 35549295 DOI: 10.1021/acs.orglett.2c01318] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein we report the first total syntheses of the trisaccharide-repeating units of Pseudomonas chlororaphis subsp. aureofaciens UCM B-306 via a one-pot assembly of the core trisaccharide structure. The rare-sugar-containing trisaccharide-repeating units are comprised of d-bacillosamine, 2-amino-2-deoxy-d-galacturonic acid or amide, and d-rhamnose units linked through three consecutive α-linkages. The total syntheses of two repeating units were completed starting from d-mannose via a longest-linear sequence of 27 steps in 5.8% and 4.4% overall yields, respectively.
Collapse
Affiliation(s)
- Bhaswati Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Nabarupa Bhattacharjee
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Ananda Rao Podilapu
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Krishna Puri
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Suvarn S Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| |
Collapse
|
2
|
Dworaczek K, Kurzylewska M, Laban M, Drzewiecka D, Pękala-Safińska A, Turska-Szewczuk A. Structural Studies of the Lipopolysaccharide of Aeromonas veronii bv. sobria Strain K133 Which Represents New Provisional Serogroup PGO1 Prevailing among Mesophilic Aeromonads on Polish Fish Farms. Int J Mol Sci 2021; 22:ijms22084272. [PMID: 33924078 PMCID: PMC8074265 DOI: 10.3390/ijms22084272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023] Open
Abstract
In the present work, we performed immunochemical studies of LPS, especially the O-specific polysaccharide (O-PS) of Aeromonas veronii bv. sobria strain K133, which was isolated from the kidney of carp (Cyprinus carpio L.) during an outbreak of motile aeromonad infection/motile aeromonad septicemia (MAI/MAS) on a Polish fish farm. The structural characterization of the O-PS, which was obtained by mild acid degradation of the LPS, was performed with chemical methods, MALDI-TOF mass spectrometry, and 1H and 13C NMR spectroscopy. It was revealed that the O-PS has a unique composition of a linear tetrasaccharide repeating unit and contains a rarely occurring sugar 2,4-diamino-2,4,6-trideoxy-D-glucose (bacillosamine), which may determine the specificity of the serogroup. Western blotting and ELISA confirmed that A. veronii bv. sobria strain K133 belongs to the new serogroup PGO1, which is one of the most commonly represented immunotypes among carp and trout isolates of Aeromonas sp. in Polish aquacultures. Considering the increase in the MAI/MAS incidences and their impact on freshwater species, also with economic importance, and in the absence of an effective immunoprophylaxis, studies of the Aeromonas O-antigens are relevant in the light of epidemiological data and monitoring emergent pathogens representing unknown antigenic variants and serotypes.
Collapse
Affiliation(s)
- Katarzyna Dworaczek
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland; (K.D.); (M.K.); (M.L.)
| | - Maria Kurzylewska
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland; (K.D.); (M.K.); (M.L.)
| | - Magdalena Laban
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland; (K.D.); (M.K.); (M.L.)
| | - Dominika Drzewiecka
- Laboratory of General Microbiology, Department of Biology of Bacteria, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16 St., 90-237 Łódź, Poland;
| | - Agnieszka Pękala-Safińska
- Department of Fish Diseases, National Veterinary Research Institute, Partyzantów 57 St., 24-100 Puławy, Poland;
| | - Anna Turska-Szewczuk
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland; (K.D.); (M.K.); (M.L.)
- Correspondence: ; Tel.: +48-81-537-50-18; Fax: +48-81-537-59-59
| |
Collapse
|
3
|
Maciejewska A, Bednarczyk B, Lugowski C, Lukasiewicz J. Structural Studies of the Lipopolysaccharide Isolated from Plesiomonas shigelloides O22:H3 (CNCTC 90/89). Int J Mol Sci 2020; 21:ijms21186788. [PMID: 32947917 PMCID: PMC7555982 DOI: 10.3390/ijms21186788] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/04/2020] [Accepted: 09/14/2020] [Indexed: 02/02/2023] Open
Abstract
Plesiomonas shigelloides is a Gram-negative, rod-shaped bacterium which causes foodborne intestinal infections, including gastroenteritis. It is one of the most frequent causes of travellers’ diarrhoea. Lipopolysaccharide (LPS, endotoxin), an important virulence factor of the species, is in most cases characterised by a smooth character, demonstrated by the presence of all regions, such as lipid A, core oligosaccharide, and O-specific polysaccharide, where the latter part determines O-serotype. P. shigelloides LPS is still a poorly characterised virulence factor considering a “translation” of the particular O-serotype into chemical structure. To date, LPS structure has only been elucidated for 15 strains out of 102 O-serotypes. Structures of the new O-specific polysaccharide and core oligosaccharide of P. shigelloides from the Czechoslovak National Collection of Type Cultures CNCTC 90/89 LPS (O22), investigated by chemical analysis, mass spectrometry, and 1H,13C nuclear magnetic resonance (NMR) spectroscopy, have now been reported. The pentasaccharide repeating unit of the O-specific polysaccharide is built of one d-QuipNAc and is rich in four d-GalpNAcAN residues. Moreover, the new core oligosaccharide shares common features of other P. shigelloides endotoxins, i.e., the lack of phosphate groups and the presence of uronic acids.
Collapse
|
4
|
Kourmentza C, Araujo D, Sevrin C, Roma-Rodriques C, Lia Ferreira J, Freitas F, Dionisio M, Baptista PV, Fernandes AR, Grandfils C, Reis MAM. Occurrence of non-toxic bioemulsifiers during polyhydroxyalkanoate production by Pseudomonas strains valorizing crude glycerol by-product. BIORESOURCE TECHNOLOGY 2019; 281:31-40. [PMID: 30798087 DOI: 10.1016/j.biortech.2019.02.066] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 05/26/2023]
Abstract
While screening for polyhydroxyalkanoate (PHA) producing strains, using glycerol rich by-product as carbon source, it was observed that extracellular polymers were also secreted into the culture broth. The scope of this study was to characterize both intracellular and extracellular polymers, produced by Pseudomonas putida NRRL B-14875 and Pseudomonas chlororaphis DSM 50083, mostly focusing on those novel extracellular polymers. It was found that they fall into the class of bioemulsifiers (BE), as they showed excellent emulsion stability against different hydrocarbons/oils at various pH conditions, temperature and salinity concentrations. Cytotoxicity tests revealed that BE produced by P. chlororaphis inhibited the growth of highly pigmented human melanoma cells (MNT-1) by 50% at concentrations between 150 and 200 μg/mL, while no effect was observed on normal skin primary keratinocytes and melanocytes. This is the first study reporting mcl-PHA production by P. putida NRRL B-14785 and bioemulsifier production from both P. putida and P. chlororaphis strains.
Collapse
Affiliation(s)
- Constantina Kourmentza
- Food & Bioprocessing Sciences (FaBS), Department of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, RG6 6AP Reading, UK; UCIBIO, Department of Chemistry, Faculty of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| | - Diana Araujo
- UCIBIO, Department of Chemistry, Faculty of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Chantal Sevrin
- Interfaculty Research Centre of Biomaterials (CEIB), University of Liège, B-4000 Liège, Belgium
| | - Catarina Roma-Rodriques
- UCIBIO, Department of Life Sciences, Faculty of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Joana Lia Ferreira
- LAQV-REQUIMTE, Department of Conservation and Restoration, Faculty of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Filomena Freitas
- UCIBIO, Department of Chemistry, Faculty of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Madalena Dionisio
- UCIBIO, Department of Chemistry, Faculty of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Pedro V Baptista
- UCIBIO, Department of Life Sciences, Faculty of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Alexandra R Fernandes
- UCIBIO, Department of Life Sciences, Faculty of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Christian Grandfils
- Interfaculty Research Centre of Biomaterials (CEIB), University of Liège, B-4000 Liège, Belgium
| | - Maria A M Reis
- UCIBIO, Department of Chemistry, Faculty of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
5
|
Zhang Y, Li T, Liu Y, Li X, Zhang C, Feng Z, Peng X, Li Z, Qin S, Xing K. Volatile Organic Compounds Produced by Pseudomonas chlororaphis subsp. aureofaciens SPS-41 as Biological Fumigants To Control Ceratocystis fimbriata in Postharvest Sweet Potatoes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3702-3710. [PMID: 30860830 DOI: 10.1021/acs.jafc.9b00289] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The biocontrol activity and chemical composition of the volatile organic compounds (VOCs) produced by Pseudomonas chlororaphis subsp. aureofaciens SPS-41 were investigated. The VOCs inhibited mycelial growth and spore germination in Ceratocystis fimbriata, which causes black rot disease in sweet potato tuber roots (TRs) and showed wide-spectrum antifungal activity against several plant pathogenic fungi. A microscopic examination of C. fimbriata cells suggested morphological changes and a loss of cellular contents. Different inoculation strategies significantly affected the antifungal activity of the VOCs. In the volatile profile of SPS-41, the most abundant compound, 3-methyl-1-butanol, followed by phenylethyl alcohol and 2-methyl-1-butanol showed strong inhibition toward C. fimbriata. The weight loss rate and disease severity of the TRs were significantly reduced in response to the VOCs emitted by SPS-41. The results suggest that the VOCs produced by P. chlororaphis subsp. aureofaciens SPS-41 might constitute an attractive biological fumigant for controlling black rot disease in sweet potato TRs.
Collapse
Affiliation(s)
| | | | | | - Xiaoyan Li
- College of Life Sciences , Northeast Forestry University , Harbin 150040 , Heilongjiang , P.R. China
| | | | | | | | | | | | | |
Collapse
|
6
|
Afoullouss S, Calabro K, Genta-Jouve G, Gegunde S, Alfonso A, Nesbitt R, Morrow C, Alonso E, Botana LM, Allcock AL, Thomas OP. Treasures from the Deep: Characellides as Anti-Inflammatory Lipoglycotripeptides from the Sponge Characella pachastrelloides. Org Lett 2018; 21:246-251. [DOI: 10.1021/acs.orglett.8b03684] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sam Afoullouss
- Marine Biodiscovery, School of Chemistry and Ryan Institute, National University of Ireland Galway (NUI Galway), University Road, H91TK33 Galway, Ireland
- Zoology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway (NUI Galway), University Road, H91TK33 Galway, Ireland
| | - Kevin Calabro
- Marine Biodiscovery, School of Chemistry and Ryan Institute, National University of Ireland Galway (NUI Galway), University Road, H91TK33 Galway, Ireland
| | - Grégory Genta-Jouve
- C-TAC, COMETE UMR 8638 CNRS, Université Paris Descartes, 4 avenue de l’observatoire, 75006 Paris, France
| | - Sandra Gegunde
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Amparo Alfonso
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Robert Nesbitt
- Marine Biodiscovery, School of Chemistry and Ryan Institute, National University of Ireland Galway (NUI Galway), University Road, H91TK33 Galway, Ireland
| | - Christine Morrow
- Zoology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway (NUI Galway), University Road, H91TK33 Galway, Ireland
- Department of Natural Sciences, National Museums Northern Ireland, 153 Bangor Road, Cultra BT18 0EU, Northern Ireland
| | - Eva Alonso
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Luis M. Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - A. Louise Allcock
- Zoology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway (NUI Galway), University Road, H91TK33 Galway, Ireland
| | - Olivier P. Thomas
- Marine Biodiscovery, School of Chemistry and Ryan Institute, National University of Ireland Galway (NUI Galway), University Road, H91TK33 Galway, Ireland
| |
Collapse
|
7
|
Structure of the O-specific polysaccharides of Pseudomonas chlororaphis subsp. chlororaphis UCM B-106. Carbohydr Res 2016; 433:1-4. [PMID: 27416015 DOI: 10.1016/j.carres.2016.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 11/22/2022]
Abstract
O-specific polysaccharide was obtained from the lipopolysaccharide of Pseudomonas chlororaphis subsp. chlororaphis UCM B-106 and studied by composition analysis along with 1D and 2D (1)H and (13)C NMR spectroscopy. The polysaccharide was found to contain a derivative of pseudaminic acid (Pse) and the following structure of the trisaccharide repeating unit was established: →4)-β-Psep5Ac7Hb-(2 → 6)-β-d-Galf-(1 → 3)-β-d-Galp-(1→ where Pse5Ac7Hb indicates 5-acetamido-3,5,7,9-tetradeoxy-7-[(R)-3-hydroxybutanoylamino]-l-glycero-l-manno-non-2-ulosonic acid.
Collapse
|
8
|
Varbanets LD, Zdorovenko EL, Kiprianova EA, Avdeeva LV, Brovarskaya OS, Rybalko SL. Characterization of the lipipolysaccharides of Pseudomonas chlororaphis. Microbiology (Reading) 2015. [DOI: 10.1134/s0026261715060132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|