1
|
Krylov VB, Gómez-Redondo M, Solovev AS, Yashunsky DV, Brown AJ, Stappers MH, Gow NA, Ardá A, Jiménez-Barbero J, Nifantiev NE. Identification of a new DC-SIGN binding pentamannoside epitope within the complex structure of Candida albicans mannan. Cell Surf 2023; 10:100109. [PMID: 37520856 PMCID: PMC10382935 DOI: 10.1016/j.tcsw.2023.100109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023] Open
Abstract
The dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) is an innate immune C-type lectin receptor that recognizes carbohydrate-based pathogen associated with molecular patterns of various bacteria, fungi, viruses and protozoa. Although a range of highly mannosylated glycoproteins have been shown to induce signaling via DC-SIGN, precise structure of the recognized oligosaccharide epitope is still unclear. Using the array of oligosaccharides related to selected fragments of main fungal antigenic polysaccharides we revealed a highly specific pentamannoside ligand of DC-SIGN, consisting of α-(1 → 2)-linked mannose chains with one inner α-(1 → 3)-linked unit. This structural motif is present in Candida albicans cell wall mannan and corresponds to its antigenic factors 4 and 13b. This epitope is not ubiquitous in other yeast species and may account for the species-specific nature of fungal recognition via DC-SIGN. The discovered highly specific oligosaccharide ligands of DC-SIGN are tractable tools for interdisciplinary investigations of mechanisms of fungal innate immunity and anti-Candida defense. Ligand- and receptor-based NMR data demonstrated the pentasaccharide-to-DC-SIGN interaction in solution and enabled the deciphering of the interaction topology.
Collapse
Affiliation(s)
- Vadim B. Krylov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | - Arsenii S. Solovev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry V. Yashunsky
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alistair J.P. Brown
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Mark H.T. Stappers
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Neil A.R. Gow
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Ana Ardá
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, 48160 Derio, Spain
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, 48160 Derio, Spain
- IKERBASQUE, Basque Foundation for Science and Technology, Euskadi Plaza 5, 48009 Bilbao, Spain
- Department of Organic & Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country, 48940 Leioa, Spain
- Centro de Investigacion Biomedica En Red de Enfermedades Respiratorias, Madrid, Spain
| | - Nikolay E. Nifantiev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
2
|
Krylov VB, Kuznetsov AN, Polyanskaya AV, Tsarapaev PV, Yashunsky DV, Kushlinskii NE, Nifantiev NE. ASCA-related antibodies in the blood sera of healthy donors and patients with colorectal cancer: characterization with oligosaccharides related to Saccharomyces cerevisiae mannan. Front Mol Biosci 2023; 10:1296828. [PMID: 38146532 PMCID: PMC10749338 DOI: 10.3389/fmolb.2023.1296828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/20/2023] [Indexed: 12/27/2023] Open
Abstract
Mannans are polysaccharide antigens expressed on the cell wall of different fungal species including Saccharomyces cerevisiae and Candida spp. These fungi are components of the normal intestinal microflora, and the presence of antibodies to fungal antigens is known to reflect the features of the patient's immune system. Thus, titers of IgG and IgA antibodies against Saccharomyces cerevisiae mannan (ASCA) are markers for clinical diagnostics of inflammatory bowel diseases. The complex organization and heterogeneity of cell-wall mannans may reduce the quality and reproducibility of ELISA results due to interference by different antigenic epitopes. In this research, we analyzed the levels of IgG antibodies in the sera of healthy donors and patients with colorectal cancer using an array of synthetic oligosaccharides related to distinct fragments of fungal mannan. This study aimed to establish the influence of oligosaccharide structure on their antigenicity. Variations in the structure of the previously established ASCA epitope (changing type of linkage, chain length, and the presence of branches) significantly modified the ability of ligands to bind to circulating antibodies in blood sera. The study showed that surface presentation density of the ligand critically affects the results of enzyme immunoassay. The transition from natural coating antigens to their corresponding synthetic mimetics with a defined structure opens new opportunities for improving existing ELISA test systems, as well as developing diagnostic kits with new properties.
Collapse
Affiliation(s)
- Vadim B. Krylov
- Laboratory of Synthetic Glycovaccines, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Anton N. Kuznetsov
- Laboratory of Synthetic Glycovaccines, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alina V. Polyanskaya
- Laboratory of Synthetic Glycovaccines, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Pavel V. Tsarapaev
- Laboratory of Synthetic Glycovaccines, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Dmitry V. Yashunsky
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Nikolay E. Kushlinskii
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Nikolay E. Nifantiev
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
3
|
Alenichev M, Levin A, Yushina A, Kostrikina E, Lebedin Y, Andreeva I, Grigorenko V, Krylov V, Nifantiev N. Nano-biosensor based on the combined use of the dynamic and static light scattering for Aspergillus galactomannan analysis. SENSING AND BIO-SENSING RESEARCH 2022. [DOI: 10.1016/j.sbsr.2022.100475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
4
|
Fittolani G, Tyrikos-Ergas T, Vargová D, Chaube MA, Delbianco M. Progress and challenges in the synthesis of sequence controlled polysaccharides. Beilstein J Org Chem 2021; 17:1981-2025. [PMID: 34386106 PMCID: PMC8353590 DOI: 10.3762/bjoc.17.129] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/22/2021] [Indexed: 01/15/2023] Open
Abstract
The sequence, length and substitution of a polysaccharide influence its physical and biological properties. Thus, sequence controlled polysaccharides are important targets to establish structure-properties correlations. Polymerization techniques and enzymatic methods have been optimized to obtain samples with well-defined substitution patterns and narrow molecular weight distribution. Chemical synthesis has granted access to polysaccharides with full control over the length. Here, we review the progress towards the synthesis of well-defined polysaccharides. For each class of polysaccharides, we discuss the available synthetic approaches and their current limitations.
Collapse
Affiliation(s)
- Giulio Fittolani
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Theodore Tyrikos-Ergas
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Denisa Vargová
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Manishkumar A Chaube
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Martina Delbianco
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
5
|
Affinity characteristics of anti-β-(1→3)-d-glucan monoclonal antibody 3G11 by fluorescence polarization immunoassay. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3175-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Peng W, Li M, Zhou X, Long Q, Li D, Gao J, Sun Q, Sun S, Su Y, Wang P. Convergent Synthesis of Branched β-Glucan Tridecasaccharides Ready for Conjugation. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1440-9386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AbstractStructurally defined and pure oligosaccharides corresponding to β-glucans have attracted great attention because of their potential properties as immunostimulating agents and as antigens of vaccine candidates. We herein describe a convergent synthesis of ready-to-conjugate tridecasaccharides composed of a β-1,3-glucan nonasaccharide backbone and a β-1,6-glucan tetrasaccharide branch. The assembly was achieved by employing trichloroacetimidate glycosylations and features the gram-scale preparation of the nonasaccharide backbone and installation of the tetrasaccharide branch involving orthoester rearrangement to the glycoside.
Collapse
Affiliation(s)
- Wenjie Peng
- Laboratory of Systems Biomedicine, Chinese Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University
| | - Ming Li
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology
| | - Xin Zhou
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China
| | - Qing Long
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China
| | - Dongwei Li
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China
| | - Jingru Gao
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China
| | - Qikai Sun
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China
| | - Shaozi Sun
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China
| | - Yong Su
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China
| | - Peng Wang
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China
| |
Collapse
|
7
|
Krylov VB, Nifantiev NE. Synthetic carbohydrate based anti-fungal vaccines. DRUG DISCOVERY TODAY. TECHNOLOGIES 2020; 35-36:35-43. [PMID: 33388126 DOI: 10.1016/j.ddtec.2020.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/30/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Affiliation(s)
- Vadim B Krylov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Nikolay E Nifantiev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia.
| |
Collapse
|
8
|
Multi-stage glucose/pachymaran co-feeding enhanced endo-β-1,3-glucanase production by Trichoderma harzianum via simultaneous increases in cell concentration and inductive effect. Bioprocess Biosyst Eng 2020; 43:1479-1486. [DOI: 10.1007/s00449-020-02341-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/29/2020] [Indexed: 10/24/2022]
|
9
|
Gold(I)-promoted synthesis of a β-(1,3)-glucan hexadecasaccharide via the highly convergent strategy. Carbohydr Res 2019; 482:107735. [DOI: 10.1016/j.carres.2019.06.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/15/2019] [Accepted: 06/24/2019] [Indexed: 11/20/2022]
|
10
|
Matveev AL, Krylov VB, Khlusevich YA, Baykov IK, Yashunsky DV, Emelyanova LA, Tsvetkov YE, Karelin AA, Bardashova AV, Wong SSW, Aimanianda V, Latgé JP, Tikunova NV, Nifantiev NE. Novel mouse monoclonal antibodies specifically recognizing β-(1→3)-D-glucan antigen. PLoS One 2019; 14:e0215535. [PMID: 31022215 PMCID: PMC6483564 DOI: 10.1371/journal.pone.0215535] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 04/03/2019] [Indexed: 01/27/2023] Open
Abstract
β-(1→3)-D-Glucan is an essential component of the fungal cell wall. Mouse monoclonal antibodies (mAbs) against synthetic nona-β-(1→3)-D-glucoside conjugated with bovine serum albumin (BSA) were generated using hybridoma technology. The affinity constants of two selected mAbs, 3G11 and 5H5, measured by a surface plasmon resonance biosensor assay using biotinylated nona-β-(1→3)-D-glucan as the ligand, were approximately 11 nM and 1.9 nM, respectively. The glycoarray, which included a series of synthetic oligosaccharide derivatives representing β-glucans with different lengths of oligo-β-(1→3)-D-glucoside chains, demonstrated that linear tri-, penta- and nonaglucoside, as well as a β-(1→6)-branched octasaccharide, were recognized by mAb 5H5. By contrast, only linear oligo-β-(1→3)-D-glucoside chains that were not shorter than pentaglucosides (but not the branched octaglucoside) were ligands for mAb 3G11. Immunolabelling indicated that 3G11 and 5H5 interact with both yeasts and filamentous fungi, including species from Aspergillus, Candida, Penicillium genera and Saccharomyces cerevisiae, but not bacteria. Both mAbs could inhibit the germination of Aspergillus fumigatus conidia during the initial hours and demonstrated synergy with the antifungal fluconazole in killing C. albicans in vitro. In addition, mAbs 3G11 and 5H5 demonstrated protective activity in in vivo experiments, suggesting that these β-glucan-specific mAbs could be useful in combinatorial antifungal therapy.
Collapse
Affiliation(s)
- Andrey L. Matveev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Vadim B. Krylov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Yana A. Khlusevich
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Ivan K. Baykov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Dmitry V. Yashunsky
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ljudmila A. Emelyanova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Yury E. Tsvetkov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander A. Karelin
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alevtina V. Bardashova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Sarah S. W. Wong
- Aspergillus Unit, Institut Pasteur, Paris, France
- Molecular Mycology Unit, Institut Pasteur, Paris, France
| | - Vishukumar Aimanianda
- Aspergillus Unit, Institut Pasteur, Paris, France
- Molecular Mycology Unit, Institut Pasteur, Paris, France
| | - Jean-Paul Latgé
- Aspergillus Unit, Institut Pasteur, Paris, France
- * E-mail: (JPL); (NVT); (NEN)
| | - Nina V. Tikunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
- * E-mail: (JPL); (NVT); (NEN)
| | - Nikolay E. Nifantiev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
- * E-mail: (JPL); (NVT); (NEN)
| |
Collapse
|
11
|
Krylov VB, Nifantiev NE. Synthetic Oligosaccharides Mimicking Fungal Cell Wall Polysaccharides. Curr Top Microbiol Immunol 2019; 425:1-16. [PMID: 31875266 DOI: 10.1007/82_2019_187] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The cell wall of pathogenic fungi is highly important for the development of fungal infections and is the first cellular component to interact with the host immune system. The fungal cell wall is mainly built up of different polysaccharides representing ligands for pattern recognition receptors (PRRs) on immune cells and antibodies. Purified fungal polysaccharides are not easily available; in addition, they are structurally heterogenic and have wide molecular weight distribution that limits the possibility to use natural polysaccharides to assess the structure of their active determinants. The synthetic oligosaccharides of definite structure representing distinct polysaccharide fragments are indispensable tools for a variety of biological investigations and represent an advantageous alternative to natural polysaccharides. The attachment of a spacer group to these oligosaccharides permits their efficient transformation into immunogenic glycoconjugates as well as their immobilization on plates or microbeads. Herein, we summarize current information on synthetic availability of the variety of oligosaccharides related to main types of fungal cell wall components: galactomannan, α- and β-mannan, α- and β-(1 → 3)-glucan, chitin, chitosan, and others. These data are supplemented with published results of biochemical and immunological applications of synthetic oligosaccharides as molecular probes especially as the components of thematic glycoarrays suitable for characterization of anti-polysaccharide antibodies and cellular lectins or PRRs.
Collapse
Affiliation(s)
- Vadim B Krylov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991, Moscow, Russia
| | - Nikolay E Nifantiev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991, Moscow, Russia.
| |
Collapse
|
12
|
Krylov VB, Petruk MI, Karelin AA, Yashunuskii DV, Tsvetkov YE, Glushko NI, Khaldeeva EV, Mokeeva VL, Bilanenko EN, Lebedin YS, Eremin SA, Nifantiev NE. Carbohydrate Specificity of Antibodies Against Yeast Preparations of Saccharomyces cerevisiae and Candida krusei. APPL BIOCHEM MICRO+ 2018. [DOI: 10.1134/s0003683818060108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Krylov VB, Petruk MI, Glushko NI, Khaldeeva EV, Mokeeva VL, Bilanenko EN, Lebedin YS, Eremin SA, Nifantiev NE. Carbohydrate Specificity of Antibodies against Phytopathogenic Fungi of the Aspergillus Genus. APPL BIOCHEM MICRO+ 2018. [DOI: 10.1134/s0003683818050095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Krylov VB, Petruk MI, Grigoryev IV, Lebedin YS, Glushko NI, Khaldeeva EV, Argunov DA, Khatuntseva EA, Toplishek MV, Komarova BS, Karelin AA, Yudina ON, Menshov VM, Yashunskii DV, Tsvetkov YE, Nifantiev NE. Study of the Carbohydrate Specificity of Antibodies Against Aspergillus fumigatus Using the Library of Synthetic Mycoantigens. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1068162017060073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Chizhov AO, Argunov DA, Gening ML, Sukhova EV, Khatuntseva EA, Karelin AA, Komarova BS, Orekhova MV, Krylov VB, Yasunskii DV, Tsvetkov YE, Nifantiev NE. Gas-Phase Fragmentation Studies of Biotinylated, Hexaethylene Glycol–Spacered Oligosaccharides—Molecular Probes—Using Electrospray Mass Spectrometry on a Hybrid High-Resolution Mass Spectrometer. JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1134/s1061934817130044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Vereshchagin AN. Classical and interdisciplinary approaches to the design of organic and hybrid molecular systems. Russ Chem Bull 2018. [DOI: 10.1007/s11172-017-1950-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
17
|
Yashunsky DV, Karelin AA, Tsvetkov YE, Nifantiev NE. Synthesis of 3-aminopropyl β-(1 → 6)-d-glucotetraoside and its biotinylated derivative. Carbohydr Res 2017; 455:18-22. [PMID: 29156224 DOI: 10.1016/j.carres.2017.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 11/01/2017] [Accepted: 11/01/2017] [Indexed: 10/18/2022]
Abstract
3-Aminopropyl β-(1 → 6)-d-glucotetraoside has been synthesized from 3-benzyloxycarbonylaminopropanol and 6-O-acetyl-2,3,4-tri-O-benzoyl-d-glucopyranosyl trichloroacetimidate by successive attachment of one monosaccharide unit in total yield of 22%. Free aminopropyl glycoside was converted into a biotin derivative that can be used for controlled immobilization of the oligosaccharide on streptavidin-coated ELISA plates and for tracing carbohydrate binding molecules.
Collapse
Affiliation(s)
- Dmitry V Yashunsky
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Alexander A Karelin
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Yury E Tsvetkov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Nikolay E Nifantiev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia.
| |
Collapse
|
18
|
Synthesis of oligosaccharides structurally related to fragments of Streptococcus pneumoniae type 3 capsular polysaccharide. Russ Chem Bull 2017. [DOI: 10.1007/s11172-017-1708-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Tsvetkov DE, Sukhova EV, Karelin AA, Tsvetkov YE, Nifantiev NE. Estimation of the degree of conjugation of oligosaccharide haptens to bovine serum albumin in the course of the squarate procedure using gel permeation HPLC. Russ Chem Bull 2017. [DOI: 10.1007/s11172-016-1680-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
|
21
|
Rational design of complex molecular structures starting from readily available precursors. Russ Chem Bull 2017. [DOI: 10.1007/s11172-016-1470-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Yashunsky DV, Tsvetkov YE, Nifantiev NE. Synthesis of 3-aminopropyl glycoside of branched β-(1 → 3)-d-glucooctaoside. Carbohydr Res 2016; 436:25-30. [PMID: 27846427 DOI: 10.1016/j.carres.2016.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/07/2016] [Accepted: 11/07/2016] [Indexed: 02/02/2023]
Abstract
The synthesis was described of branched glucooctaoside bearing the β-(1 → 3)-glucotrioside side chain at O-6 of the second (from the reducing end) monosaccharide unit of the linear β-(1 → 3)-glucopentaoside core.
Collapse
Affiliation(s)
- Dmitry V Yashunsky
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Yury E Tsvetkov
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Nikolay E Nifantiev
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia.
| |
Collapse
|
23
|
Yashunsky DV, Tsvetkov YE, Nifantiev NE. Synthesis of 3-aminopropyl glycosides of branched β-(1→3)-glucooligosaccharides. Russ Chem Bull 2016. [DOI: 10.1007/s11172-015-1249-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Paulovičová E, Paulovičová L, Pilišiová R, Jančinová V, Yashunsky DV, Karelin AA, Tsvetkov YE, Nifantiev NE. The evaluation of β-(1 → 3)-nonaglucoside as an anti-Candida albicans immune response inducer. Cell Microbiol 2016; 18:1294-307. [PMID: 27310441 DOI: 10.1111/cmi.12631] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 05/05/2016] [Accepted: 06/13/2016] [Indexed: 12/29/2022]
Abstract
Synthetically prepared bovine serum albumin (BSA) conjugate of linear β-(1 → 3)-nonaglucoside ligand (G9) has been applied as a biological response immunomodulator in vivo and ex vivo. Active immunization of Balb/c mice revealed effective induction of specific humoral responses in comparison with Candida β-D-glucan and Candida whole cells. Induced post-vaccination serum exhibited a growth-inhibition effect on the multi-azole-resistant clinical strain Candida albicans CCY 29-3-164 in experimental mucocutaneous infection ex vivo. Evaluation of immune cell proliferation and the cytotoxic potential of the G9-ligand has revealed its bioavailability and an immunostimulative effect in vaccination-sensitized Balb/c mice splenocytes and RAW 264.7 macrophages.
Collapse
Affiliation(s)
- Ema Paulovičová
- Department of Immunochemistry of Glycoconjugates, Center for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lucia Paulovičová
- Department of Immunochemistry of Glycoconjugates, Center for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ružena Pilišiová
- Department of Immunochemistry of Glycoconjugates, Center for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Viera Jančinová
- Department of Cellular Pharmacology, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dubravska cesta 9, 84236, Bratislava, Slovakia
| | - Dmitry V Yashunsky
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander A Karelin
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Yury E Tsvetkov
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Nikolay E Nifantiev
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|