García-Moreno MI, Ortega-Caballero F, Rísquez-Cuadro R, Ortiz Mellet C, García Fernández JM. The Impact of Heteromultivalency in Lectin Recognition and Glycosidase Inhibition: An Integrated Mechanistic Study.
Chemistry 2017;
23:6295-6304. [PMID:
28240441 DOI:
10.1002/chem.201700470]
[Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Indexed: 01/06/2023]
Abstract
The vision of multivalency as a strategy limited to achieve affinity enhancements between a protein receptor and its putative sugar ligand (glycotope) has proven too simplistic. On the one hand, binding of a glycotope in a dense glycocalix-like construct to a lectin partner has been shown to be sensitive to the presence of a third sugar entity (heterocluster effect). On the other hand, several carbohydrate processing enzymes (glycosidases and glycosyltransferases) have been found to be also responsive to multivalent presentations of binding partners (multivalent enzyme inhibition), a phenomenon first discovered for iminosugar-type inhibitory species (inhitopes) and recently demonstrated for multivalent carbohydrate constructs. By assessing a series of homo- and heteroclusters combining α-d-glucopyranosyl-related glycotopes and inhitopes, it was shown that multivalency and heteromultivalency govern both kinds of events, allowing for activation, deactivation or enhancement of specific recognition phenomena towards a spectrum of lectin and glycosidase partners in a multimodal manner. This unified scenario originates from the ability of (hetero)multivalent architectures to trigger glycosidase binding modes that are reminiscent of those harnessed by lectins, which should be considered when profiling the biological activity of multivalent architectures.
Collapse