1
|
Kurzylewska M, Turska-Szewczuk A, Dworaczek K, Bomba A, Drzewiecka D, Pękala-Safińska A. Immunochemical studies and gene cluster relationships of closely related O-antigens of Aeromonas hydrophila Pt679, Aeromonas popoffii A4, and Aeromonas sobria K928 strains classified into the PGO1 serogroup dominant in Polish aquaculture of carp and rainbow trout. Carbohydr Res 2023; 531:108896. [PMID: 37437416 DOI: 10.1016/j.carres.2023.108896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023]
Abstract
The present study included three Aeromonas sp. strains isolated from fish tissues during Motile Aeromonas Infection/Motile Aeromonas Septicaemia disease outbreaks on commercial farms, i.e.: Aeromonas hydrophila Pt679 obtained from rainbow trout as well as Aeromonas popoffii A4 (formerly Aeromonas encheleia) and Aeromonas sobria K928 both isolated from carp, which were classified into the new provisional PGO1 serogroup prevailing among aeromonads in Polish aquaculture. The structure of the O-specific polysaccharides of A4 and K928 has been previously established. Here, immunochemical studies of the O-specific polysaccharide of A. hydrophila Pt679 were undertaken. The O-specific polysaccharide was obtained from the lipopolysaccharide of A. hydrophila Pt679 after mild acid hydrolysis and separation by gel-permeation chromatography. The high-molecular-mass fraction was studied using chemical methods and 1H and 13C NMR spectroscopy, including 1H,1H NOESY, and 1H,13C HMBC experiments. The following structure of the branched repeating unit of the O-polysaccharide from A. hydrophila Pt679 was determined: [Formula: see text] The studies indicated that O-polysaccharides from A. hydrophila Pt679, A. popoffii A4 and A. sobria K928 share similarities but they also contain unique characteristics. Western blotting and an enzyme-linked immunosorbent assay revealed that the cross-reactivity of the related O-antigens is caused by the occurrence of common structural elements, whereas additional epitopes define the specificity of the O-serotypes. For genetic relationship studies, the O-antigen gene cluster was characterized in the genome of the A. hydrophila Pt679 strain and compared with the corresponding sequences of A. popoffii A4 and A. sobria K928 and with sequences available in the databases. The composition of the regions was found to be consistent with the O-antigen structures of Aeromonas strains classified into the same PGO1 serogroup.
Collapse
Affiliation(s)
- Maria Kurzylewska
- Department of Genetics and Microbiology, Institute of Biological Sciences, M. Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Anna Turska-Szewczuk
- Department of Genetics and Microbiology, Institute of Biological Sciences, M. Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland.
| | - Katarzyna Dworaczek
- Department of Genetics and Microbiology, Institute of Biological Sciences, M. Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Arkadiusz Bomba
- Department of Omics Analyses, National Veterinary Research Institute, Partyzantow 57, 24-100, Pulawy, Poland
| | - Dominika Drzewiecka
- Laboratory of General Microbiology, Department of Biology of Bacteria, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
| | - Agnieszka Pękala-Safińska
- Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animal Science, Poznan University of Life Sciences, Wolynska 35, 60-637, Poznan, Poland
| |
Collapse
|
2
|
Kurzylewska M, Bomba A, Dworaczek K, Pękala-Safińska A, Turska-Szewczuk A. Structure and gene cluster annotation of the O-antigen of Aeromonas sobria strain K928 isolated from common carp and classified into the new Aeromonas PGO1 serogroup. Carbohydr Res 2023; 528:108809. [PMID: 37086562 DOI: 10.1016/j.carres.2023.108809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 04/24/2023]
Abstract
Aeromonas sobria strain K928 was isolated from a common carp during a Motile Aeromonas Infection/Motile Aeromonas Septicaemia disease outbreak on a Polish fish farm and classified into the new provisional PGO1 serogroup. The lipopolysaccharide of A. sobria K928 was subjected to mild acid hydrolysis, and the O-specific polysaccharide, which was isolated by gel-permeation chromatography, was studied using sugar and methylation analyses and 1H and 13C NMR spectroscopy. The following structure of the branched O-specific polysaccharide repeating unit of A. sobria K928 was established. →2)[α-D-Fucp3NRHb-(1→3)]-α-L-Rhap-(1→3)-β-L-Rhap-(1→4)-α-L-Rhap-(1→3)-β-D-FucpNAc-(1→ The O-antigen gene cluster was identified and characterized in the genome of the A. sobria K928 strain after comparison with sequences in the available databases. The composition of the O-antigen genetic region was found to be consistent with the O-polysaccharide structure, and its organization was proposed.
Collapse
Affiliation(s)
- Maria Kurzylewska
- Department of Genetics and Microbiology, Institute of Biological Sciences, M. Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Arkadiusz Bomba
- Department of Omics Analyses, National Veterinary Research Institute, Partyzantow 57, 24-100, Pulawy, Poland
| | - Katarzyna Dworaczek
- Department of Genetics and Microbiology, Institute of Biological Sciences, M. Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Agnieszka Pękala-Safińska
- Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animal Science, Poznan University of Life Sciences, Wolynska 35, 60-637, Poznan, Poland
| | - Anna Turska-Szewczuk
- Department of Genetics and Microbiology, Institute of Biological Sciences, M. Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland.
| |
Collapse
|
3
|
Filatov AV, Perepelov AV, Shashkov AS, Burygin GL, Gogoleva NE, Khlopko YA, Grinev VS. Structure and genetics of the O-antigen of Enterobacter cloacae K7 containing di-N-acetylpseudaminic acid. Carbohydr Res 2021; 508:108392. [PMID: 34274818 DOI: 10.1016/j.carres.2021.108392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 11/29/2022]
Abstract
The O-antigen (O-polysaccharide) is an essential component of lipopolysaccharide on the surface of Gram-negative bacteria and plays an important role in interaction with host organisms. In this study, we investigated the chemical structure and characterized the gene cluster of Enterobacter cloacae K7 O-antigen. As judged by sugar analyses along with NMR spectroscopy data, E. cloacae K7 antigen has a tetrasaccharide O-unit with the following structure: →8)-β-Psep5Ac7Ac-(2 → 2)-β-l-Rhap-(1 → 4)-α-l-Rhap-(1 → 3)-α-d-Galp-(1→ The O-antigen gene cluster of E. cloacae K7 between conserved genes galF and gnd was sequenced. Most genes necessary for the O-antigen synthesis were found in the cluster and their functions were tentatively assigned by comparison with sequences in the available databases.
Collapse
Affiliation(s)
- Andrei V Filatov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russian Federation.
| | - Andrei V Perepelov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russian Federation
| | - Alexander S Shashkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russian Federation
| | - Gennady L Burygin
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 410049, Saratov, Russian Federation; Vavilov Saratov State Agrarian University, 410012, Saratov, Russian Federation
| | - Natalia E Gogoleva
- Kazan Institute of Biochemistry and Biophysics, Kazan Science Centre, Russian Academy of Sciences, 420111, Kazan, Russian Federation; Kazan Federal University, 420111, Kazan, Russian Federation
| | - Yuriy A Khlopko
- Institute for Cellular and Intracellular Symbiosis, Urals Branch, Russian Academy of Sciences, 460000, Orenburg, Russian Federation
| | - Vyacheslav S Grinev
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 410049, Saratov, Russian Federation
| |
Collapse
|
4
|
Li Y, Huang J, Wang X, Xu C, Han T, Guo X. Genetic Characterization of the O-Antigen and Development of a Molecular Serotyping Scheme for Enterobacter cloacae. Front Microbiol 2020; 11:727. [PMID: 32411106 PMCID: PMC7198725 DOI: 10.3389/fmicb.2020.00727] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/27/2020] [Indexed: 11/13/2022] Open
Abstract
Enterobacter cloacae is a well-characterized opportunistic pathogen that is closely associated with various nosocomial infections. The O-antigen, which is one of the most variable constituents on the cell surface, has been used widely and traditionally for serological classification of many gram-negative bacteria. E. cloacae is divided into 30 serotypes, based on its O-antigen diversity. In this study, by using genomic and comparative-genomic approaches, we analyzed the O-antigen gene clusters of 26 E. cloacae serotypes in depth. We also identified the sero-specific gene for each serotype and developed a multiplex polymerase chain reaction (PCR) method. The sensitivity of the assay was 0.1 ng for genomic DNA and 103 colony forming units for pure cultures. The assay reliability was evaluated by double-blinded testing with 81 clinical strains. Furthermore, we established a valid, genome-based tool for in silico serotyping of E. cloacae. By screening 431 E. cloacae genomes deposited in GenBank, 304 were classified into current antigenic scheme, and 112 were allocated into 55 putative novel serotypes. Our results represent the first genetic basis of the O-antigen diversity and variation of E. cloacae, providing a rationale for studying the O-antigen associated evolution and pathogenesis of this bacterium. In addition, we extended the current serotyping system for E. cloacae, which is important for detection and epidemiological surveillance purposes for this important pathogen.
Collapse
Affiliation(s)
- Yayue Li
- The Third Central Hospital of Tianjin, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Junjie Huang
- Department of Vascular Surgery, Tianjin Hospital, Tianjin, China
| | - Xiaotong Wang
- Tianjin Children's Hospital, Third Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Cong Xu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Tao Han
- The Third Central Hospital of Tianjin, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Xi Guo
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| |
Collapse
|
5
|
Knirel YA, Naumenko OI, Senchenkova SN, Perepelov AV. Chemical methods for selective cleavage of glycosidic bonds in the structural analysis of bacterial polysaccharides. RUSSIAN CHEMICAL REVIEWS 2019. [DOI: 10.1070/rcr4856] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
|
7
|
Structural and genetic characterization of the O-antigen of Enterobacter cloacae C5529 related to the O-antigen of E. cloacae G3054. Carbohydr Res 2017; 443-444:49-52. [PMID: 28342969 DOI: 10.1016/j.carres.2017.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/19/2017] [Accepted: 02/23/2017] [Indexed: 11/22/2022]
Abstract
On mild acid degradation of the lipopolysaccharide of Enterobacter cloacae C5529, the O-polysaccharide chain was cleaved at the linkages of 5,7-diacetamido-3,5,7,9-tetradeoxy-l-glycero-l-manno-non-2-ulosonic acid (di-N-acetylpseudaminic acid, Psep5Ac7Ac). The resultant oligosaccharide and an alkali-treated lipopolysaccharide were studied by sugar analysis along with 1H and 13C NMR spectroscopy, and the following structure of the tetrasaccharide repeating unit of the O-polysaccharide was established: →4)-β-Psep5Ac7Ac-(2 → 3)-β-d-Galp-(1 → 6)-β-d-Galf-(1 → 3)-α-d-Galp-(1→ It differs from a structurally related O-polysaccharide of E. cloacae G3045 studied early (Perepelov, A. V.; Wang, M.; Filatov, A. V.; Guo, X.; Shashkov, A. S.; Wang, L.; Knirel, Y. A. Carbohydr. Res. 2015; 407:59-62) in positions of substitution of β-Psep5Ac7Ac (O-4 vs. O-8) and β-Galp (O-3 vs. O-6) and the absence of a side-chain α-Galp residue. The O-antigen gene clusters of E. cloacae C5529 and G3045 are organized identically and include genes with the same putative functions in the O-polysaccharide synthesis. Based on these and serological data, it is suggested to combine E. cloacae C5529 and G3054 in one O-serogroup as two subgroups.
Collapse
|