1
|
Maranha A, Costa M, Ripoll-Rozada J, Manso JA, Miranda V, Mendes VM, Manadas B, Macedo-Ribeiro S, Ventura MR, Pereira PJB, Empadinhas N. Self-recycling and partially conservative replication of mycobacterial methylmannose polysaccharides. Commun Biol 2023; 6:108. [PMID: 36707645 PMCID: PMC9883506 DOI: 10.1038/s42003-023-04448-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 01/10/2023] [Indexed: 01/29/2023] Open
Abstract
The steep increase in nontuberculous mycobacteria (NTM) infections makes understanding their unique physiology an urgent health priority. NTM synthesize two polysaccharides proposed to modulate fatty acid metabolism: the ubiquitous 6-O-methylglucose lipopolysaccharide, and the 3-O-methylmannose polysaccharide (MMP) so far detected in rapidly growing mycobacteria. The recent identification of a unique MMP methyltransferase implicated the adjacent genes in MMP biosynthesis. We report a wide distribution of this gene cluster in NTM, including slowly growing mycobacteria such as Mycobacterium avium, which we reveal to produce MMP. Using a combination of MMP purification and chemoenzymatic syntheses of intermediates, we identified the biosynthetic mechanism of MMP, relying on two enzymes that we characterized biochemically and structurally: a previously undescribed α-endomannosidase that hydrolyses MMP into defined-sized mannoligosaccharides that prime the elongation of new daughter MMP chains by a rare α-(1→4)-mannosyltransferase. Therefore, MMP biogenesis occurs through a partially conservative replication mechanism, whose disruption affected mycobacterial growth rate at low temperature.
Collapse
Affiliation(s)
- Ana Maranha
- grid.8051.c0000 0000 9511 4342CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342IIIUC - Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Mafalda Costa
- grid.8051.c0000 0000 9511 4342CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Jorge Ripoll-Rozada
- grid.5808.50000 0001 1503 7226IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal ,grid.507090.b0000 0004 5303 6218Present Address: Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria, Santander, Spain
| | - José A. Manso
- grid.5808.50000 0001 1503 7226IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Vanessa Miranda
- grid.10772.330000000121511713Bioorganic Chemistry Group, Instituto de Tecnologia Química Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
| | - Vera M. Mendes
- grid.8051.c0000 0000 9511 4342CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Bruno Manadas
- grid.8051.c0000 0000 9511 4342CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Sandra Macedo-Ribeiro
- grid.5808.50000 0001 1503 7226IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - M. Rita Ventura
- grid.10772.330000000121511713Bioorganic Chemistry Group, Instituto de Tecnologia Química Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
| | - Pedro José Barbosa Pereira
- grid.5808.50000 0001 1503 7226IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Nuno Empadinhas
- grid.8051.c0000 0000 9511 4342CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342IIIUC - Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| |
Collapse
|
2
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Exploiting Aerobic Carboxydotrophic Bacteria for Industrial Biotechnology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 180:1-32. [PMID: 34894287 DOI: 10.1007/10_2021_178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Aerobic carboxydotrophic bacteria are a group of microorganisms which possess the unique trait to oxidize carbon monoxide (CO) as sole energy source with molecular oxygen (O2) to produce carbon dioxide (CO2) which subsequently is used for biomass formation via the Calvin-Benson-Bassham cycle. Moreover, most carboxydotrophs are also able to oxidize hydrogen (H2) with hydrogenases to drive the reduction of carbon dioxide in the absence of CO. As several abundant industrial off-gases contain significant amounts of CO, CO2, H2 as well as O2, these bacteria come into focus for industrial application to produce chemicals and fuels from such gases in gas fermentation approaches. Since the group of carboxydotrophic bacteria is rather unknown and not very well investigated, we will provide an overview about their lifestyle and the underlying metabolic characteristics, introduce promising members for industrial application, and give an overview of available genetic engineering tools. We will point to limitations and discuss challenges, which have to be overcome to apply metabolic engineering approaches and to utilize aerobic carboxydotrophs in the industrial environment.
Collapse
|
4
|
Anaraki MT, Lysak DH, Downey K, Kock FVC, You X, Majumdar RD, Barison A, Lião LM, Ferreira AG, Decker V, Goerling B, Spraul M, Godejohann M, Helm PA, Kleywegt S, Jobst K, Soong R, Simpson MJ, Simpson AJ. NMR spectroscopy of wastewater: A review, case study, and future potential. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 126-127:121-180. [PMID: 34852923 DOI: 10.1016/j.pnmrs.2021.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
NMR spectroscopy is arguably the most powerful tool for the study of molecular structures and interactions, and is increasingly being applied to environmental research, such as the study of wastewater. With over 97% of the planet's water being saltwater, and two thirds of freshwater being frozen in the ice caps and glaciers, there is a significant need to maintain and reuse the remaining 1%, which is a precious resource, critical to the sustainability of most life on Earth. Sanitation and reutilization of wastewater is an important method of water conservation, especially in arid regions, making the understanding of wastewater itself, and of its treatment processes, a highly relevant area of environmental research. Here, the benefits, challenges and subtleties of using NMR spectroscopy for the analysis of wastewater are considered. First, the techniques available to overcome the specific challenges arising from the nature of wastewater (which is a complex and dilute matrix), including an examination of sample preparation and NMR techniques (such as solvent suppression), in both the solid and solution states, are discussed. Then, the arsenal of available NMR techniques for both structure elucidation (e.g., heteronuclear, multidimensional NMR, homonuclear scalar coupling-based experiments) and the study of intermolecular interactions (e.g., diffusion, nuclear Overhauser and saturation transfer-based techniques) in wastewater are examined. Examples of wastewater NMR studies from the literature are reviewed and potential areas for future research are identified. Organized by nucleus, this review includes the common heteronuclei (13C, 15N, 19F, 31P, 29Si) as well as other environmentally relevant nuclei and metals such as 27Al, 51V, 207Pb and 113Cd, among others. Further, the potential of additional NMR methods such as comprehensive multiphase NMR, NMR microscopy and hyphenated techniques (for example, LC-SPE-NMR-MS) for advancing the current understanding of wastewater are discussed. In addition, a case study that combines natural abundance (i.e. non-concentrated), targeted and non-targeted NMR to characterize wastewater, along with in vivo based NMR to understand its toxicity, is included. The study demonstrates that, when applied comprehensively, NMR can provide unique insights into not just the structure, but also potential impacts, of wastewater and wastewater treatment processes. Finally, low-field NMR, which holds considerable future potential for on-site wastewater monitoring, is briefly discussed. In summary, NMR spectroscopy is one of the most versatile tools in modern science, with abilities to study all phases (gases, liquids, gels and solids), chemical structures, interactions, interfaces, toxicity and much more. The authors hope this review will inspire more scientists to embrace NMR, given its huge potential for both wastewater analysis in particular and environmental research in general.
Collapse
Affiliation(s)
- Maryam Tabatabaei Anaraki
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Daniel H Lysak
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Katelyn Downey
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Flávio Vinicius Crizóstomo Kock
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada; Department of Chemistry, Federal University of São Carlos-SP (UFSCar), São Carlos, SP, Brazil
| | - Xiang You
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Rudraksha D Majumdar
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada; Synex Medical, 2 Bloor Street E, Suite 310, Toronto, ON M4W 1A8, Canada
| | - Andersson Barison
- NMR Center, Federal University of Paraná, CP 19081, 81530-900 Curitiba, PR, Brazil
| | - Luciano Morais Lião
- NMR Center, Institute of Chemistry, Universidade Federal de Goiás, Goiânia 74690-900, Brazil
| | | | - Venita Decker
- Bruker Biospin GmbH, Silberstreifen 4, 76287 Rheinstetten, Germany
| | | | - Manfred Spraul
- Bruker Biospin GmbH, Silberstreifen 4, 76287 Rheinstetten, Germany
| | | | - Paul A Helm
- Environmental Monitoring & Reporting Branch, Ontario Ministry of the Environment, Toronto M9P 3V6, Canada
| | - Sonya Kleywegt
- Technical Assessment and Standards Development Branch, Ontario Ministry of the Environment, Conservation and Parks, Toronto, ON M4V 1M2, Canada
| | - Karl Jobst
- Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Ronald Soong
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Myrna J Simpson
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Andre J Simpson
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada.
| |
Collapse
|
5
|
Choma A, Zamłyńska K, Mazur A, Pastuszka A, Kaczyński Z, Komaniecka I. Lipid A from Oligotropha carboxidovorans Lipopolysaccharide That Contains Two Galacturonic Acid Residues in the Backbone and Malic Acid A Tertiary Acyl Substituent. Int J Mol Sci 2020; 21:ijms21217991. [PMID: 33121154 PMCID: PMC7663294 DOI: 10.3390/ijms21217991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 12/04/2022] Open
Abstract
The free-living Gram-negative bacterium Oligotropha carboxidovorans (formerly: Pseudomonas carboxydovorans), isolated from wastewater, is able to live in aerobic and, facultatively, in autotrophic conditions, utilizing carbon monoxide or hydrogen as a source of energy. The structure of O. carboxidovorans lipid A, a hydrophobic part of lipopolysaccharide, was studied using NMR spectroscopy and high-resolution mass spectrometry (MALDI-ToF MS) techniques. It was demonstrated that the lipid A backbone is composed of two d-GlcpN3N residues connected by a β-(1→6) glycosidic linkage, substituted by galacturonic acids (d-GalpA) at C-1 and C-4’ positions. Both diaminosugars are symmetrically substituted by 3-hydroxy fatty acids (12:0(3-OH) and 18:0(3-OH)). Ester-linked secondary acyl residues (i.e., 18:0, and 26:0(25-OH) and a small amount of 28:0(27-OH)) are located in the distal part of lipid A. These very long-chain hydroxylated fatty acids (VLCFAs) were found to be almost totally esterified at the (ω-1)-OH position with malic acid. Similarities between the lipid A of O. carboxidovorans and Mesorhizobium loti, Rhizobium leguminosarum, Caulobacter crescentus as well as Aquifex pyrophylus were observed and discussed from the perspective of the genomic context of these bacteria.
Collapse
Affiliation(s)
- Adam Choma
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland; (A.C.); (K.Z.); (A.M.); (A.P.)
| | - Katarzyna Zamłyńska
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland; (A.C.); (K.Z.); (A.M.); (A.P.)
| | - Andrzej Mazur
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland; (A.C.); (K.Z.); (A.M.); (A.P.)
| | - Anna Pastuszka
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland; (A.C.); (K.Z.); (A.M.); (A.P.)
| | - Zbigniew Kaczyński
- Laboratory of Structural Biochemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland;
| | - Iwona Komaniecka
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland; (A.C.); (K.Z.); (A.M.); (A.P.)
- Correspondence: ; Tel.: +48-81-537-5981
| |
Collapse
|
6
|
Feng Y, Zhang J, Wen C, Sedem Dzah C, Chidimma Juliet I, Duan Y, Zhang H. Recent advances in Agaricus bisporus polysaccharides: Extraction, purification, physicochemical characterization and bioactivities. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.04.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Siebert D, Busche T, Metz AY, Smaili M, Queck BAW, Kalinowski J, Eikmanns BJ. Genetic Engineering of Oligotropha carboxidovorans Strain OM5-A Promising Candidate for the Aerobic Utilization of Synthesis Gas. ACS Synth Biol 2020; 9:1426-1440. [PMID: 32379961 DOI: 10.1021/acssynbio.0c00098] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Due to climate change and worldwide pollution, development of highly sustainable routes for industrial production of basic and specialty chemicals is critical nowadays. One possible approach is the use of CO2- and CO-utilizing microorganisms in biotechnological processes to produce value-added compounds from synthesis gas (mixtures of CO2, CO, and H2) or from C1-containing industrial waste gases. Such syngas fermentation processes have already been established, e.g., biofuel production using strictly anaerobic acetogenic bacteria. However, aerobic processes may be favorable for the formation of more costly (ATP-intensive) products. Oligotropha carboxidovorans strain OM5 is an aerobic carboxidotrophic bacterium and potentially a promising candidate for such processes. We here performed RNA-Seq analysis comparing cells of this organism grown heterotrophically with acetate or autotrophically with CO2, CO, and H2 as carbon and energy source and found a variety of chromosomally and of native plasmid-encoded genes to be highly differentially expressed. In particular, genes and gene clusters encoding proteins required for autotrophic growth (CO2 fixation via Calvin-Benson-Bassham cycle), for CO metabolism (CO dehydrogenase), and for H2 utilization (hydrogenase), all located on megaplasmid pHCG3, were much higher expressed during autotrophic growth with synthesis gas. Furthermore, we successfully established reproducible transformation of O. carboxidovorans via electroporation and developed gene deletion and gene exchange protocols via two-step recombination, enabling inducible and stable expression of heterologous genes as well as construction of defined mutants of this organism. Thus, this study marks an important step toward metabolic engineering of O. carboxidovorans and effective utilization of C1-containing gases with this organism.
Collapse
Affiliation(s)
- Daniel Siebert
- Institute of Microbiology and Biotechnology, Ulm University, 89069 Ulm, Germany
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, 94315 Straubing, Germany
| | - Tobias Busche
- Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Aline Y. Metz
- Institute of Microbiology and Biotechnology, Ulm University, 89069 Ulm, Germany
| | - Medina Smaili
- Institute of Microbiology and Biotechnology, Ulm University, 89069 Ulm, Germany
| | - Bastian A. W. Queck
- Institute of Microbiology and Biotechnology, Ulm University, 89069 Ulm, Germany
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany
| | | |
Collapse
|
8
|
Kokoulin M, Lizanov IN, Romanenko LA, Chikalovets IV. Structure of phosphorylated and sulfated polysaccharides from lipopolysaccharide of marine bacterium Marinicella litoralis KMM 3900T. Carbohydr Res 2020; 490:107961. [DOI: 10.1016/j.carres.2020.107961] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/11/2020] [Accepted: 02/20/2020] [Indexed: 10/24/2022]
|
9
|
Biosynthesis of mycobacterial methylmannose polysaccharides requires a unique 1- O-methyltransferase specific for 3- O-methylated mannosides. Proc Natl Acad Sci U S A 2019; 116:835-844. [PMID: 30606802 DOI: 10.1073/pnas.1813450116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mycobacteria are a wide group of organisms that includes strict pathogens, such as Mycobacterium tuberculosis, as well as environmental species known as nontuberculous mycobacteria (NTM), some of which-namely Mycobacterium avium-are important opportunistic pathogens. In addition to a distinctive cell envelope mediating critical interactions with the host immune system and largely responsible for their formidable resistance to antimicrobials, mycobacteria synthesize rare intracellular polymethylated polysaccharides implicated in the modulation of fatty acid metabolism, thus critical players in cell envelope assembly. These are the 6-O-methylglucose lipopolysaccharides (MGLP) ubiquitously detected across the Mycobacterium genus, and the 3-O-methylmannose polysaccharides (MMP) identified only in NTM. The polymethylated nature of these polysaccharides renders the intervening methyltransferases essential for their optimal function. Although the knowledge of MGLP biogenesis is greater than that of MMP biosynthesis, the methyltransferases of both pathways remain uncharacterized. Here, we report the identification and characterization of a unique S-adenosyl-l-methionine-dependent sugar 1-O-methyltransferase (MeT1) from Mycobacterium hassiacum that specifically blocks the 1-OH position of 3,3'-di-O-methyl-4α-mannobiose, a probable early precursor of MMP, which we chemically synthesized. The high-resolution 3D structure of MeT1 in complex with its exhausted cofactor, S-adenosyl-l-homocysteine, together with mutagenesis studies and molecular docking simulations, unveiled the enzyme's reaction mechanism. The functional and structural properties of this unique sugar methyltransferase further our knowledge of MMP biosynthesis and provide important tools to dissect the role of MMP in NTM physiology and resilience.
Collapse
|