1
|
Catalan EA, Seguel-Fuentes E, Fuentes B, Aranguiz-Varela F, Castillo-Godoy DP, Rivera-Asin E, Bocaz E, Fuentes JA, Bravo D, Schinnerling K, Melo-Gonzalez F. Oral Pathobiont-Derived Outer Membrane Vesicles in the Oral-Gut Axis. Int J Mol Sci 2024; 25:11141. [PMID: 39456922 PMCID: PMC11508520 DOI: 10.3390/ijms252011141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/04/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Oral pathobionts are essential in instigating local inflammation within the oral cavity and contribute to the pathogenesis of diseases in the gastrointestinal tract and other distant organs. Among the Gram-negative pathobionts, Porphyromonas gingivalis and Fusobacterium nucleatum emerge as critical drivers of periodontitis, exerting their influence not only locally but also as inducers of gut dysbiosis, intestinal disturbances, and systemic ailments. This dual impact is facilitated by their ectopic colonization of the intestinal mucosa and the subsequent mediation of distal systemic effects by releasing outer membrane vesicles (OMVs) into circulation. This review elucidates the principal components of oral pathobiont-derived OMVs implicated in disease pathogenesis within the oral-gut axis, detailing virulence factors that OMVs carry and their interactions with host epithelial and immune cells, both in vitro and in vivo. Additionally, we shed light on the less acknowledged interplay between oral pathobionts and the gut commensal Akkermansia muciniphila, which can directly impede oral pathobionts' growth and modulate bacterial gene expression. Notably, OMVs derived from A. muciniphila emerge as promoters of anti-inflammatory effects within the gastrointestinal and distant tissues. Consequently, we explore the potential of A. muciniphila-derived OMVs to interact with oral pathobionts and prevent disease in the oral-gut axis.
Collapse
Affiliation(s)
- Eduardo A. Catalan
- Laboratorio de Inmunología Traslacional, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile; (E.A.C.); (E.S.-F.); (B.F.); (F.A.-V.); (D.P.C.-G.); (E.R.-A.); (E.B.)
| | - Emilio Seguel-Fuentes
- Laboratorio de Inmunología Traslacional, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile; (E.A.C.); (E.S.-F.); (B.F.); (F.A.-V.); (D.P.C.-G.); (E.R.-A.); (E.B.)
| | - Brandon Fuentes
- Laboratorio de Inmunología Traslacional, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile; (E.A.C.); (E.S.-F.); (B.F.); (F.A.-V.); (D.P.C.-G.); (E.R.-A.); (E.B.)
| | - Felipe Aranguiz-Varela
- Laboratorio de Inmunología Traslacional, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile; (E.A.C.); (E.S.-F.); (B.F.); (F.A.-V.); (D.P.C.-G.); (E.R.-A.); (E.B.)
| | - Daniela P. Castillo-Godoy
- Laboratorio de Inmunología Traslacional, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile; (E.A.C.); (E.S.-F.); (B.F.); (F.A.-V.); (D.P.C.-G.); (E.R.-A.); (E.B.)
| | - Elizabeth Rivera-Asin
- Laboratorio de Inmunología Traslacional, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile; (E.A.C.); (E.S.-F.); (B.F.); (F.A.-V.); (D.P.C.-G.); (E.R.-A.); (E.B.)
| | - Elisa Bocaz
- Laboratorio de Inmunología Traslacional, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile; (E.A.C.); (E.S.-F.); (B.F.); (F.A.-V.); (D.P.C.-G.); (E.R.-A.); (E.B.)
| | - Juan A. Fuentes
- Laboratorio de Genética y Patogénesis Bacteriana, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile;
| | - Denisse Bravo
- Cellular Interactions Laboratory, Faculty of Dentistry, Universidad Andrés Bello, Santiago 8370133, Chile;
| | - Katina Schinnerling
- Laboratorio de Inmunología Traslacional, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile; (E.A.C.); (E.S.-F.); (B.F.); (F.A.-V.); (D.P.C.-G.); (E.R.-A.); (E.B.)
| | - Felipe Melo-Gonzalez
- Laboratorio de Inmunología Traslacional, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile; (E.A.C.); (E.S.-F.); (B.F.); (F.A.-V.); (D.P.C.-G.); (E.R.-A.); (E.B.)
| |
Collapse
|
2
|
Hager-Mair FF, Bloch S, Schäffer C. Glycolanguage of the oral microbiota. Mol Oral Microbiol 2024; 39:291-320. [PMID: 38515284 DOI: 10.1111/omi.12456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 03/23/2024]
Abstract
The oral cavity harbors a diverse and dynamic bacterial biofilm community which is pivotal to oral health maintenance and, if turning dysbiotic, can contribute to various diseases. Glycans as unsurpassed carriers of biological information are participating in underlying processes that shape oral health and disease. Bacterial glycoinfrastructure-encompassing compounds as diverse as glycoproteins, lipopolysaccharides (LPSs), cell wall glycopolymers, and exopolysaccharides-is well known to influence bacterial fitness, with direct effects on bacterial physiology, immunogenicity, lifestyle, and interaction and colonization capabilities. Thus, understanding oral bacterias' glycoinfrastructure and encoded glycolanguage is key to elucidating their pathogenicity mechanisms and developing targeted strategies for therapeutic intervention. Driven by their known immunological role, most research in oral glycobiology has been directed onto LPSs, whereas, recently, glycoproteins have been gaining increased interest. This review draws a multifaceted picture of the glycolanguage, with a focus on glycoproteins, manifested in prominent oral bacteria, such as streptococci, Porphyromonas gingivalis, Tannerella forsythia, and Fusobacterium nucleatum. We first define the characteristics of the different glycoconjugate classes and then summarize the current status of knowledge of the structural diversity of glycoconjugates produced by oral bacteria, describe governing biosynthetic pathways, and list biological roles of these energetically costly compounds. Additionally, we highlight emerging research on the unraveling impact of oral glycoinfrastructure on dental caries, periodontitis, and systemic conditions. By integrating current knowledge and identifying knowledge gaps, this review underscores the importance of studying the glycolanguage oral bacteria speak to advance our understanding of oral microbiology and develop novel antimicrobials.
Collapse
Affiliation(s)
- Fiona F Hager-Mair
- Department of Chemistry, NanoGlycobiology Research Group, Institute of Biochemistry, Universität für Bodenkultur Wien, Vienna, Austria
| | - Susanne Bloch
- Department of Chemistry, NanoGlycobiology Research Group, Institute of Biochemistry, Universität für Bodenkultur Wien, Vienna, Austria
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Christina Schäffer
- Department of Chemistry, NanoGlycobiology Research Group, Institute of Biochemistry, Universität für Bodenkultur Wien, Vienna, Austria
| |
Collapse
|
3
|
Zhu J, Li M, Li J, Wu J. Sialic acid metabolism of oral bacteria and its potential role in colorectal cancer and Alzheimer's disease. Carbohydr Res 2024; 541:109172. [PMID: 38823062 DOI: 10.1016/j.carres.2024.109172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/10/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Sialic acid metabolism in oral bacteria is a complex process involving nutrient acquisition, immune evasion, cell surface modification, and the production of metabolites that contribute to bacterial persistence and virulence in the oral cavity. In addition to causing various periodontal diseases, certain oral pathogenic bacteria, such as Porphyromonas gingivalis, Tannerella forsythia, and Fusobacterium nucleatum, can induce inflammatory reactions and influence the immunity of host cells. These associations with host cells are linked to various diseases, particularly colorectal cancer and Alzheimer's disease. Sialic acid can be found in the host oral mucosa, saliva, or food residues in the oral cavity, and it may promote the colonization of oral bacteria and contribute to disease development. This review aims to summarize the role of sialic acid metabolism in oral bacteria and discuss its effect on the pathogenesis of colorectal cancer and Alzheimer's disease.
Collapse
Affiliation(s)
- Jiao Zhu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Mengyang Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jinfang Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jianrong Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
4
|
Bell A, Severi E, Owen CD, Latousakis D, Juge N. Biochemical and structural basis of sialic acid utilization by gut microbes. J Biol Chem 2023; 299:102989. [PMID: 36758803 PMCID: PMC10017367 DOI: 10.1016/j.jbc.2023.102989] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
The human gastrointestinal (GI) tract harbors diverse microbial communities collectively known as the gut microbiota that exert a profound impact on human health and disease. The repartition and availability of sialic acid derivatives in the gut have a significant impact on the modulation of gut microbes and host susceptibility to infection and inflammation. Although N-acetylneuraminic acid (Neu5Ac) is the main form of sialic acids in humans, the sialic acid family regroups more than 50 structurally and chemically distinct modified derivatives. In the GI tract, sialic acids are found in the terminal location of mucin glycan chains constituting the mucus layer and also come from human milk oligosaccharides in the infant gut or from meat-based foods in adults. The repartition of sialic acid in the GI tract influences the gut microbiota composition and pathogen colonization. In this review, we provide an update on the mechanisms underpinning sialic acid utilization by gut microbes, focusing on sialidases, transporters, and metabolic enzymes.
Collapse
Affiliation(s)
- Andrew Bell
- Quadram Institute Bioscience, Gut Microbes and Health Institute Strategic Programme, Norwich, United Kingdom
| | - Emmanuele Severi
- Microbes in Health and Disease, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - C David Owen
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, United Kingdom
| | - Dimitrios Latousakis
- Quadram Institute Bioscience, Gut Microbes and Health Institute Strategic Programme, Norwich, United Kingdom
| | - Nathalie Juge
- Quadram Institute Bioscience, Gut Microbes and Health Institute Strategic Programme, Norwich, United Kingdom.
| |
Collapse
|
5
|
Vinogradov E, St Michael F, Cox AD. Structure of the lipopolysaccharide O-antigens from Fusobacterium nucleatum strains HM-994, HM-995, HM-997. Carbohydr Res 2022; 522:108704. [DOI: 10.1016/j.carres.2022.108704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/11/2022] [Accepted: 10/11/2022] [Indexed: 11/15/2022]
|
6
|
Dudek B, Rybka J, Bugla-Płoskońska G, Korzeniowska-Kowal A, Futoma-Kołoch B, Pawlak A, Gamian A. Biological functions of sialic acid as a component of bacterial endotoxin. Front Microbiol 2022; 13:1028796. [PMID: 36338080 PMCID: PMC9631793 DOI: 10.3389/fmicb.2022.1028796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/05/2022] [Indexed: 11/28/2022] Open
Abstract
Lipopolysaccharide (endotoxin, LPS) is an important Gram-negative bacteria antigen. LPS of some bacteria contains sialic acid (Neu5Ac) as a component of O-antigen (O-Ag), in this review we present an overview of bacteria in which the presence of Neu5Ac has been confirmed in their outer envelope and the possible ways that bacteria can acquire Neu5Ac. We explain the role of Neu5Ac in bacterial pathogenesis, and also involvement of Neu5Ac in bacterial evading the host innate immunity response and molecular mimicry phenomenon. We also highlight the role of sialic acid in the mechanism of bacterial resistance to action of serum complement. Despite a number of studies on involvement of Neu5Ac in bacterial pathogenesis many aspects of this phenomenon are still not understood.
Collapse
Affiliation(s)
- Bartłomiej Dudek
- Department of Microbiology, University of Wrocław, Wrocław, Poland
- *Correspondence: Bartłomiej Dudek,
| | - Jacek Rybka
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | | | - Agnieszka Korzeniowska-Kowal
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | | | | | - Andrzej Gamian
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
- Andrzej Gamian,
| |
Collapse
|
7
|
Farrugia C, Stafford GP, Gains AF, Cutts AR, Murdoch C. Fusobacterium nucleatum mediates endothelial damage and increased permeability following single species and polymicrobial infection. J Periodontol 2022; 93:1421-1433. [PMID: 35644006 PMCID: PMC9796848 DOI: 10.1002/jper.21-0671] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/04/2022] [Accepted: 05/20/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Numerous lines of evidence link periodontal pathobionts and their virulence factors with endothelial damage. Most research has been conducted using single species infections at the exclusion of other periodontal microorganisms that have been identified in vascular tissue. Here, we assessed endothelial infection with either single or mixed periodontal species infection and examined their effect on endothelial damage and permeability. METHODS Cell surface abundance of platelet endothelial cell adhesion molecule-1 (PECAM-1) or endothelial permeability following infection with Porphyromonas gingivalis, Fusobacterium nucleatum subspecies (ssp) nucleatum, ssp polymorphum or Tannerella forsythia as single or mixed species infection was determined by flow cytometry and a fluorescent dextran permeability assay. Zebrafish embryos were infected systemically with either single or mixed species with mortality and disease measured over time. RESULTS F. nucleatum ssp nucleatum, ssp polymorphum and P. gingivalis significantly reduced PECAM-1 abundance in single species infection, whereas T. forsythia had no effect. F. nucleatum ssp polymorphum caused considerable mortality and morbidity in a zebrafish systemic infection model. Polymicrobial infection underscored the virulence of F. nucleatum ssp polymorphum in particular with increased endothelial cell death and reduced PECAM-1 abundance in co-infection studies with this organism. When injected systemically into zebrafish in polymicrobial infection, fluorescently labeled bacteria were distributed throughout the vasculature and cardiac region where, in some instances, they co-localized with each other. CONCLUSIONS These data provide further evidence on the effects of F. nucleatum on endothelium adhesion molecule abundance and permeability while also highlighting the importance of performing polymicrobial infection to study the molecular mechanisms associated with periodontal pathogen-induced vascular damage.
Collapse
Affiliation(s)
- Cher Farrugia
- School of Clinical DentistryUniversity of SheffieldSheffieldUK,Bristol Dental SchoolUniversity of BristolBristolUK
| | | | - Ashley F. Gains
- School of Clinical DentistryUniversity of SheffieldSheffieldUK
| | | | - Craig Murdoch
- School of Clinical DentistryUniversity of SheffieldSheffieldUK
| |
Collapse
|
8
|
The structure of the LPS O-chain from five Fusobacterium nucleatum strains CTX47T, CC2_6JVN3, CC2_3FMU1, CC2_1JVN3, HM-996, containing alditol and phosphate in the main chain and development of mouse monoclonal antibodies specific to the O-antigens. Carbohydr Res 2022; 521:108648. [PMID: 36030633 DOI: 10.1016/j.carres.2022.108648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 11/20/2022]
Abstract
Fusobacterium nucleatum is an anaerobic bacterium found in the human mouth where it causes periodontitis. It was also found in colorectal cancer tissues and is linked with pregnancy complications, including pre-term and stillbirths. Cell surface structures of the bacterium could be implicated in pathogenesis. Here we report four new structures of the lipopolysaccharide O-chain (OPS) from five strains of F. nucleatum CTX47T, CC2_6JVN3, CC2_3FMU1, CC2_1JVN3, HM-996, isolated from cancerous tissues. Three of the four structures have a common sequence of hexose-diaminofucose-hexitol-phosphate in the main chain.
Collapse
|
9
|
Chinthamani S, Settem RP, Honma K, Stafford GP, Sharma A. Tannerella forsythia strains differentially induce interferon gamma-induced protein 10 (IP-10) expression in macrophages due to lipopolysaccharide heterogeneity. Pathog Dis 2022; 80:6566341. [PMID: 35404415 PMCID: PMC9053306 DOI: 10.1093/femspd/ftac008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/18/2022] [Accepted: 04/07/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
Tannerella forsythia is strongly implicated in the development of periodontitis, an inflammatory disease that destroys the bone and soft tissues supporting the tooth. To date, the knowledge of the virulence attributes of T. forsythia species has mainly come from studies with a laboratory adapted strain (ATCC 43 037). In this study, we focused on two T. forsythia clinical isolates, UB4 and UB20, in relation to their ability to activate macrophages. We found that these clinical isolates differentially induced proinflammatory cytokine expression in macrophages. Prominently, the expression of the chemokine protein IP-10 (CXCL10) was highly induced by UB20 as compared to UB4 and the laboratory strain ATCC 43 037. Our study focused on the lipopolysaccharide component (LPS) of these strains and found that UB20 expressed a smooth-type LPS, unlike UB4 and ATCC 43 037 each of which expressed a rough-type LPS. The LPS from UB20, via activation of TLR4, was found to be a highly potent inducer of IP-10 expression via signaling through STAT1 (signal transducer and activator of transcription-1). These data suggest that pathogenicity of T. forsythia species could be strain dependent and the LPS heterogeneity associated with the clinical strains might be responsible for their pathogenic potential and severity of periodontitis.
Collapse
Affiliation(s)
| | | | | | | | - Ashu Sharma
- Oral Biology, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
10
|
Structure of the lipopolysaccharide O-antigens from Fusobacterium nucleatum strains SB-106CP and HM-992 and immunological comparison to the O-antigen of strain 12230. Carbohydr Res 2022; 517:108576. [DOI: 10.1016/j.carres.2022.108576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 01/22/2023]
|
11
|
Jennings MP, Day CJ, Atack JM. How bacteria utilize sialic acid during interactions with the host: snip, snatch, dispatch, match and attach. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001157. [PMID: 35316172 PMCID: PMC9558349 DOI: 10.1099/mic.0.001157] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/08/2022] [Indexed: 12/16/2022]
Abstract
N -glycolylneuraminic acid (Neu5Gc), and its precursor N-acetylneuraminic acid (Neu5Ac), commonly referred to as sialic acids, are two of the most common glycans found in mammals. Humans carry a mutation in the enzyme that converts Neu5Ac into Neu5Gc, and as such, expression of Neu5Ac can be thought of as a 'human specific' trait. Bacteria can utilize sialic acids as a carbon and energy source and have evolved multiple ways to take up sialic acids. In order to generate free sialic acid, many bacteria produce sialidases that cleave sialic acid residues from complex glycan structures. In addition, sialidases allow escape from innate immune mechanisms, and can synergize with other virulence factors such as toxins. Human-adapted pathogens have evolved a preference for Neu5Ac, with many bacterial adhesins, and major classes of toxin, specifically recognizing Neu5Ac containing glycans as receptors. The preference of human-adapted pathogens for Neu5Ac also occurs during biosynthesis of surface structures such as lipo-oligosaccharide (LOS), lipo-polysaccharide (LPS) and polysaccharide capsules, subverting the human host immune system by mimicking the host. This review aims to provide an update on the advances made in understanding the role of sialic acid in bacteria-host interactions made in the last 5-10 years, and put these findings into context by highlighting key historical discoveries. We provide a particular focus on 'molecular mimicry' and incorporation of sialic acid onto the bacterial outer-surface, and the role of sialic acid as a receptor for bacterial adhesins and toxins.
Collapse
Affiliation(s)
- Michael P. Jennings
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Christopher J. Day
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - John M. Atack
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
- School of Environment and Science, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
12
|
Lamprinaki D, Garcia-Vello P, Marchetti R, Hellmich C, McCord KA, Bowles KM, Macauley MS, Silipo A, De Castro C, Crocker PR, Juge N. Siglec-7 Mediates Immunomodulation by Colorectal Cancer-Associated Fusobacterium nucleatum ssp. animalis. Front Immunol 2021; 12:744184. [PMID: 34659241 PMCID: PMC8517482 DOI: 10.3389/fimmu.2021.744184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/15/2021] [Indexed: 11/24/2022] Open
Abstract
Fusobacterium nucleatum is involved in the development of colorectal cancer (CRC) through innate immune cell modulation. However, the receptors of the interaction between F. nucleatum ssp. and immune cells remain largely undetermined. Here, we showed that F. nucleatum ssp. animalis interacts with Siglecs (sialic acid-binding immunoglobulin-like lectins) expressed on innate immune cells with highest binding to Siglec-7. Binding to Siglec-7 was also observed using F. nucleatum-derived outer membrane vesicles (OMVs) and lipopolysaccharide (LPS). F. nucleatum and its derived OMVs or LPS induced a pro-inflammatory profile in human monocyte-derived dendritic cells (moDCs) and a tumour associated profile in human monocyte-derived macrophages (moMϕs). Siglec-7 silencing in moDCs or CRISPR-cas9 Siglec-7-depletion of U-937 macrophage cells altered F. nucleatum induced cytokine but not marker expression. The molecular interaction between Siglec-7 and the LPS O-antigen purified from F. nucleatum ssp. animalis was further characterised by saturation transfer difference (STD) NMR spectroscopy, revealing novel ligands for Siglec-7. Together, these data support a new role for Siglec-7 in mediating immune modulation by F. nucleatum strains and their OMVs through recognition of LPS on the bacterial cell surface. This opens a new dimension in our understanding of how F. nucleatum promotes CRC progression through the generation of a pro-inflammatory environment and provides a molecular lead for the development of novel cancer therapeutic approaches targeting F. nucleatum-Siglec-7 interaction.
Collapse
Affiliation(s)
- Dimitra Lamprinaki
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Pilar Garcia-Vello
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Roberta Marchetti
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Charlotte Hellmich
- Norfolk and Norwich University Hospitals, NHS Foundation Trust, Norwich, United Kingdom
| | - Kelli A. McCord
- Departments of Chemistry, and Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Kristian M. Bowles
- Norfolk and Norwich University Hospitals, NHS Foundation Trust, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Matthew S. Macauley
- Departments of Chemistry, and Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Cristina De Castro
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Paul R. Crocker
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Nathalie Juge
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
13
|
Stokowa-Sołtys K, Wojtkowiak K, Jagiełło K. Fusobacterium nucleatum - Friend or foe? J Inorg Biochem 2021; 224:111586. [PMID: 34425476 DOI: 10.1016/j.jinorgbio.2021.111586] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 01/16/2023]
Abstract
Fusobacterium nucleatum (F. nucleatum) is one of the most abundant Gram-negative anaerobic bacteria, part of the gut, and oral commensal flora, generally found in human dental plaque. Its presence could be associated with various human diseases, including, e.g., periodontal, angina, lung and gynecological abscesses. This bacteria can enter the blood circulation as a result of periodontal infection. It was proven that F. nucleatum migrates from its primary site of colonization in the oral cavity to other parts of the body. It could cause numerous diseases, including cancers. On the other hand, it was shown that Fusobacterium produces significant amounts of butyric acid, which is a great source of energy for colonocytes (anti-inflammatory cells). Therefore, it is very interesting to get to know the two faces of F. nucleatum.
Collapse
Affiliation(s)
- Kamila Stokowa-Sołtys
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland.
| | - Kamil Wojtkowiak
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Karolina Jagiełło
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| |
Collapse
|
14
|
Marcano R, Rojo MÁ, Cordoba-Diaz D, Garrosa M. Pathological and Therapeutic Approach to Endotoxin-Secreting Bacteria Involved in Periodontal Disease. Toxins (Basel) 2021; 13:533. [PMID: 34437404 PMCID: PMC8402370 DOI: 10.3390/toxins13080533] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 07/26/2021] [Indexed: 12/16/2022] Open
Abstract
It is widely recognized that periodontal disease is an inflammatory entity of infectious origin, in which the immune activation of the host leads to the destruction of the supporting tissues of the tooth. Periodontal pathogenic bacteria like Porphyromonas gingivalis, that belongs to the complex net of oral microflora, exhibits a toxicogenic potential by releasing endotoxins, which are the lipopolysaccharide component (LPS) available in the outer cell wall of Gram-negative bacteria. Endotoxins are released into the tissues causing damage after the cell is lysed. There are three well-defined regions in the LPS: one of them, the lipid A, has a lipidic nature, and the other two, the Core and the O-antigen, have a glycosidic nature, all of them with independent and synergistic functions. Lipid A is the "bioactive center" of LPS, responsible for its toxicity, and shows great variability along bacteria. In general, endotoxins have specific receptors at the cells, causing a wide immunoinflammatory response by inducing the release of pro-inflammatory cytokines and the production of matrix metalloproteinases. This response is not coordinated, favoring the dissemination of LPS through blood vessels, as well as binding mainly to Toll-like receptor 4 (TLR4) expressed in the host cells, leading to the destruction of the tissues and the detrimental effect in some systemic pathologies. Lipid A can also act as a TLRs antagonist eliciting immune deregulation. Although bacterial endotoxins have been extensively studied clinically and in a laboratory, their effects on the oral cavity and particularly on periodontium deserve special attention since they affect the connective tissue that supports the tooth, and can be linked to advanced medical conditions. This review addresses the distribution of endotoxins associated with periodontal pathogenic bacteria and its relationship with systemic diseases, as well as the effect of some therapeutic alternatives.
Collapse
Affiliation(s)
- Rosalia Marcano
- Department of Cell Biology, Histology and Pharmacology, Faculty of Medicine and INCYL, University of Valladolid, 47005 Valladolid, Spain;
| | - M. Ángeles Rojo
- Area of Experimental Sciences, Miguel de Cervantes European University, 47012 Valladolid, Spain;
| | - Damián Cordoba-Diaz
- Area of Pharmaceutics and Food Technology, Faculty of Pharmacy, and IUFI, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Manuel Garrosa
- Department of Cell Biology, Histology and Pharmacology, Faculty of Medicine and INCYL, University of Valladolid, 47005 Valladolid, Spain;
| |
Collapse
|
15
|
Garcia‐Vello P, Di Lorenzo F, Lamprinaki D, Notaro A, Speciale I, Molinaro A, Juge N, De Castro C. Structure of the O-Antigen and the Lipid A from the Lipopolysaccharide of Fusobacterium nucleatum ATCC 51191. Chembiochem 2021; 22:1252-1260. [PMID: 33197108 PMCID: PMC8048906 DOI: 10.1002/cbic.202000751] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/14/2020] [Indexed: 01/26/2023]
Abstract
Fusobacterium nucleatum is a common member of the oral microbiota. However, this symbiont has been found to play an active role in disease development. As a Gram-negative bacterium, F. nucleatum has a protective outer membrane layer whose external leaflet is mainly composed of lipopolysaccharides (LPSs). LPSs play a crucial role in the interaction between bacteria and the host immune system. Here, we characterised the structure of the O-antigen and lipid A from F. nucleatum ssp. animalis ATCC 51191 by using a combination of GC-MS, MALDI and NMR techniques. The results revealed a novel repeat of the O-antigen structure of the LPS, [→4)-β-d-GlcpNAcA-(1→4)-β-d-GlcpNAc3NAlaA-(1→3)-α-d-FucpNAc4NR-(1→], (R=acetylated 60 %), and a bis-phosphorylated hexa-acylated lipid A moiety. Taken together these data showed that F. nucleatum ATCC 51191 has a distinct LPS which might differentially influence recognition by immune cells.
Collapse
Affiliation(s)
- Pilar Garcia‐Vello
- Departmentof Chemical SciencesUniversity of Naples Federico IIVia Cinthia, 2680126NapoliNAItaly
| | - Flaviana Di Lorenzo
- Departmentof Chemical SciencesUniversity of Naples Federico IIVia Cinthia, 2680126NapoliNAItaly
| | - Dimitra Lamprinaki
- Gut Microbes & Health Institute Strategic ProgrammeQuadram Institute BioscienceRosalind Franklin Road, Norwich Research ParkNorwichNR4 7UQUK
| | - Anna Notaro
- Departmentof Chemical SciencesUniversity of Naples Federico IIVia Cinthia, 2680126NapoliNAItaly
| | - Immacolata Speciale
- Department of Agricultural SciencesUniversity of Naples Federico IIVia Università, 10080055Portici NAItaly
| | - Antonio Molinaro
- Departmentof Chemical SciencesUniversity of Naples Federico IIVia Cinthia, 2680126NapoliNAItaly
| | - Nathalie Juge
- Gut Microbes & Health Institute Strategic ProgrammeQuadram Institute BioscienceRosalind Franklin Road, Norwich Research ParkNorwichNR4 7UQUK
| | - Cristina De Castro
- Department of Agricultural SciencesUniversity of Naples Federico IIVia Università, 10080055Portici NAItaly
| |
Collapse
|
16
|
Gao R, Wang Z, Li H, Cao Z, Gao Z, Chen H, Zhang X, Pan D, Yang R, Zhong H, Shen R, Yin L, Jia Z, Shen T, Qin N, Hu Z, Qin H. Gut microbiota dysbiosis signature is associated with the colorectal carcinogenesis sequence and improves the diagnosis of colorectal lesions. J Gastroenterol Hepatol 2020; 35:2109-2121. [PMID: 32337748 DOI: 10.1111/jgh.15077] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 04/04/2020] [Accepted: 04/24/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIM The gut microbiota is associated with colorectal lesions in cases of precancer and colorectal cancer (CRC). However, there are apparent differences in studies on the gut microbiota in the pathogenic sequence from precancer to cancer. Here, we characterize the gut microbiota signatures of colorectal precancer and cancer and test their utility in detecting colorectal lesions in two independent Chinese cohorts. METHODS Stool samples collected from patients with precancer and CRC were subjected to 16S ribosomal RNA gene sequencing and metagenomic shotgun sequencing analyses, which revealed the microbial signatures of the two disease stages. RESULTS In comparison with healthy controls, lower microbial richness and diversity were observed in precancer and intensive interbacterial associations were found in CRC. We identified 41 bacteria that showed gradual increases while 12 bacteria showed gradual decreases at the genus level gradually during the development of CRC. Novel CRC-associated pathogenetic species were identified. Species units that contributed to altered microbial functions were identified in CRC patients and healthy controls. The microbial panel showed a comparable ability to fecal immunochemical test (FIT) in detecting CRC. However, the combination of microbes and FIT significantly improved the detection ability and sensitivity of colon lesions based on 18 genera. Microbial network analysis revealed a significant positive correlation among beneficial microbes and a negative correlation in detrimental phenotypes. CONCLUSIONS Microbial dysbiosis was revealed in colorectal lesions. The combination of microbial markers and FIT improved the CRC detection ability, which might assist in the early diagnosis of CRC.
Collapse
Affiliation(s)
- Renyuan Gao
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,Institute for Intestinal Diseases, School of Medicine, Tongji University, Shanghai, China
| | - Zhiguo Wang
- Department of General Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Hao Li
- Institute for Intestinal Diseases, School of Medicine, Tongji University, Shanghai, China.,Department of General Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhan Cao
- Institute for Intestinal Diseases, School of Medicine, Tongji University, Shanghai, China
| | - Zhiguang Gao
- Department of Emergency, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hongqi Chen
- Department of General Surgery, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Xiaohui Zhang
- Institute for Intestinal Diseases, School of Medicine, Tongji University, Shanghai, China.,Department of General Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dengdeng Pan
- Institute for Intestinal Diseases, School of Medicine, Tongji University, Shanghai, China.,Department of General Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Rong Yang
- Department of Pediatrics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hui Zhong
- Department of Pediatrics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Rongrong Shen
- Department of Nursing, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lu Yin
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhenyi Jia
- Department of General Surgery, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Tongyi Shen
- Institute for Intestinal Diseases, School of Medicine, Tongji University, Shanghai, China.,Department of General Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Nan Qin
- Institute for Intestinal Diseases, School of Medicine, Tongji University, Shanghai, China.,Department of General Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhiqian Hu
- Department of General Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Huanlong Qin
- Institute for Intestinal Diseases, School of Medicine, Tongji University, Shanghai, China.,Department of General Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
17
|
St Michael F, Fleming P, Cox AD, Vinogradov E. Structural analysis of the core oligosaccharides from Fusobacterium nucleatum lipopolysaccharides. Carbohydr Res 2020; 499:108198. [PMID: 33280822 DOI: 10.1016/j.carres.2020.108198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 11/17/2022]
Abstract
Fusobacterium nucleatum is a gram-negative bacterium, part of the normal human microflora. It is associated with various health complications, including periodontitis and colorectal cancer. Its surface is covered with lipopolysaccharide, which interacts with the immune system and can be involved in various processes in health and disease conditions. Here we present the results of structural analysis of core oligosaccharides from the lipopolysaccharides of several strains of F. nucleatum. Pure compounds were isolated using mild acid hydrolysis or alkaline deacylation of the lipopolysaccharides and analyzed by NMR spectroscopy, mass-spectrometry and chemical methods. All cores analyzed had a common octasaccharide region, including five heptose residues and a non-phosphorylated 3-deoxy-d-manno-oct-2-ulosonic acid residue. The common region is substituted with different additional components specific for each strain. By structure type the F. nucleatum core is similar to that produced by Aeromonas.
Collapse
Affiliation(s)
- Frank St Michael
- Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, K1A 0R6, Canada
| | - Perry Fleming
- Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, K1A 0R6, Canada
| | - Andrew D Cox
- Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, K1A 0R6, Canada
| | - Evgeny Vinogradov
- Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, K1A 0R6, Canada.
| |
Collapse
|
18
|
Cairns CM, St Michael F, Fleming P, Vinogradov EV, Cox AD. Structural analysis of the lipopolysaccharide O-antigen from Fusobacterium nucleatum strain CC 7/3 JVN3 C1 and development of a mouse monoclonal antibody specific to the O-antigen. Can J Microbiol 2020; 66:529-534. [PMID: 32396022 DOI: 10.1139/cjm-2020-0117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fusobacterium nucleatum is becoming increasingly recognised as an emerging pathogen, gaining attention as a potential factor for exacerbating colorectal cancer and is strongly linked with pregnancy complications including pre-term and still births. Little is known about the virulence factors of this organism; thus, we have initiated studies to examine the bacterium's surface glycochemistry. In an effort to characterise the surface carbohydrates of F. nucleatum, the aims of this study were to investigate the structure of the lipopolysaccharide (LPS) O-antigen of the cancer-associated isolate F. nucleatum strain CC 7/3 JVN3 C1 (hereafter C1) and to develop monoclonal antibodies (mAbs) to the LPS O-antigen that may be beneficial to the growing field of F. nucleatum research. In this study, we combined several technologies, including nuclear magnetic resonance (NMR) spectroscopy, to elucidate the structure of the LPS O-antigen repeat unit as -[-4-β-Gal-3-α-FucNAc4N-4-α-NeuNAc-]-. We have previously identified this structure as the LPS O-antigen repeat unit from strain 10953. In this present study, we developed a mAb to the C1 LPS O-antigen and confirmed the mAbs cross-reactivity to the 10953 strain, thus confirming the structural identity.
Collapse
Affiliation(s)
- Chantelle M Cairns
- Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON K1A 0R6, Canada.,Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON K1A 0R6, Canada
| | - Frank St Michael
- Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON K1A 0R6, Canada.,Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON K1A 0R6, Canada
| | - Perry Fleming
- Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON K1A 0R6, Canada.,Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON K1A 0R6, Canada
| | - Evgeny V Vinogradov
- Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON K1A 0R6, Canada.,Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON K1A 0R6, Canada
| | - Andrew D Cox
- Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON K1A 0R6, Canada.,Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON K1A 0R6, Canada
| |
Collapse
|
19
|
Di Lorenzo F, De Castro C, Silipo A, Molinaro A. Lipopolysaccharide structures of Gram-negative populations in the gut microbiota and effects on host interactions. FEMS Microbiol Rev 2019; 43:257-272. [DOI: 10.1093/femsre/fuz002] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 01/11/2019] [Indexed: 12/15/2022] Open
Affiliation(s)
- Flaviana Di Lorenzo
- Department of Chemical Sciences, University of Naples Federico II, via Cinthia 4, 80126 Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, via Cinthia 4, 80126 Naples, Italy
| | - Cristina De Castro
- Task Force on Microbiome Studies, University of Naples Federico II, via Cinthia 4, 80126 Naples, Italy
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055 Portici, Italy
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, via Cinthia 4, 80126 Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, via Cinthia 4, 80126 Naples, Italy
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II, via Cinthia 4, 80126 Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, via Cinthia 4, 80126 Naples, Italy
| |
Collapse
|
20
|
Structure of the LPS O-chain from Fusobacterium nucleatum strain ATCC 23726 containing a novel 5,7-diamino-3,5,7,9-tetradeoxy-l-gluco-non-2-ulosonic acid presumably having the d-glycero-l-gluco configuration. Carbohydr Res 2018; 468:69-72. [PMID: 30153554 DOI: 10.1016/j.carres.2018.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/08/2018] [Accepted: 08/18/2018] [Indexed: 01/08/2023]
Abstract
Fusobacterium nucleatum is an anaerobic bacterium found in the human mouth where it causes periodontitis. It was also found in colorectal cancer tissues and is linked with pregnancy complications, including pre-term and still births. Cell surface structures of the bacterium could be implicated in pathogenesis. Here we report the following structure of the lipopolysaccharide O-chain of a spontaneous streptomycin resistant (SmR) mutant of F. nucleatum strain ATCC 23726: -4-β-Non5Am7Ac-4-β-d-GlcNAcyl3NFoAN-3-β-d-FucNAc4N- where GlcNAcyl3NFoAN indicates 2,3-diamino-2,3-dideoxyglucuronic acid amide with Fo at N-3 being formyl and Acyl at N-2 being propanoyl (∼70%) or butanoyl (∼30%); Non5Am7Ac indicates 7-acetamido-5-acetimidoylamino-3,5,7,9-tetradeoxy-l-gluco-non-2-ulosonic acid presumably having the d-glycero-l-gluco configuration. To our knowledge, no l-gluco isomer of higher sugars of this class as well as no N-propanoyl or N-butanoyl group have so far been found in bacterial polysaccharides.
Collapse
|
21
|
Vinogradov E, St Michael F, Cox AD. Structure of the LPS O-chain from Fusobacterium nucleatum strain MJR 7757 B. Carbohydr Res 2018; 463:37-39. [PMID: 29753950 DOI: 10.1016/j.carres.2018.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 01/22/2023]
Abstract
Fusobacterium nucleatum is an anaerobic bacterium found in the human mouth where it causes periodontitis. It was also found in colorectal cancer tissues and is linked with pregnancy complications, including pre-term and still births. Cell surface structures of the bacterium could be implicated in pathogenesis. Here we report the following structure of the lipopolysaccharide O-chain of F. nucleatum strain MJR 7757 B:where Lac is (R)-1-carboxyethyl (lactic acid residue); all monosaccharides are in the pyranose form. ManNAc4Lac, analogue of N-acetylmuramic acid, is found for the first time in natural sources.
Collapse
Affiliation(s)
- Evgeny Vinogradov
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, ON, K1A 0R6, Canada.
| | - Frank St Michael
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, ON, K1A 0R6, Canada
| | - Andrew D Cox
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, ON, K1A 0R6, Canada
| |
Collapse
|
22
|
Ruscitto A, Sharma A. Peptidoglycan synthesis in Tannerella forsythia: Scavenging is the modus operandi. Mol Oral Microbiol 2018; 33:125-132. [PMID: 29247483 DOI: 10.1111/omi.12210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2017] [Indexed: 01/05/2023]
Abstract
Tannerella forsythia is a Gram-negative oral pathogen strongly associated with periodontitis. This bacterium has an absolute requirement for exogenous N-acetylmuramic acid (MurNAc), an amino sugar that forms the repeating disaccharide unit with amino sugar N-acetylglucosamine (GlcNAc) of the peptidoglycan backbone. In silico genome analysis indicates that T. forsythia lacks the key biosynthetic enzymes needed for the de novo synthesis of MurNAc, and so relies on alternative ways to meet its requirement for peptidoglycan biosynthesis. In the subgingival niche, the bacterium can acquire MurNAc and peptidoglycan fragments (muropeptides) released by the cohabiting bacteria during their cell wall breakdown associated with cell division. Tannerella forsythia is able to also use host sialic acid (Neu5Ac) in lieu of MurNAc or muropeptides for its survival during the biofilm growth. Evidence suggests that the bacterium might be able to shunt sialic acid into a metabolic pathway leading to peptidoglycan synthesis. In this review, we explore the mechanisms by which T. forsythia is able to scavenge MurNAc, muropeptide and sialic acid for its peptidoglycan synthesis, and the impact of these scavenging activities on pathogenesis.
Collapse
Affiliation(s)
| | - A Sharma
- Department of Oral Biology, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
23
|
Abstract
Fusobacterium nucleatum is an anaerobic bacterium found in the human mouth where it causes periodontitis. It was also found in colorectal cancer tissues and is linked with pregnancy complications, including pre-term and still births. Cell surface structures of the bacterium could be implicated in pathogenesis. Here we report the following structure of the lipopolysaccharide O-chain of F. nucleatum strain 12230: -6-α-d-Glc-4-β-d-GlcNHBu3NHBuA-3-β-d-QuiNAc4NABu- where ABu and HBu indicate (R)-3-aminobutanoyl and (R)-3-hydroxybutanoyl, respectively; all monosaccharides are in the pyranose form.
Collapse
|