1
|
Wang N, Kong Y, Li J, Hu Y, Li X, Jiang S, Dong C. Synthesis and application of phosphorylated saccharides in researching carbohydrate-based drugs. Bioorg Med Chem 2022; 68:116806. [PMID: 35696797 DOI: 10.1016/j.bmc.2022.116806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 11/24/2022]
Abstract
Phosphorylated saccharides are valuable targets in glycochemistry and glycobiology, which play an important role in various physiological and pathological processes. The current research on phosphorylated saccharides primarily focuses on small molecule inhibitors, glycoconjugate vaccines and novel anti-tumour targeted drug carrier materials. It can maximise the pharmacological effects and reduce the toxicity risk caused by nonspecific off-target reactions of drug molecules. However, the number and types of natural phosphorylated saccharides are limited, and the complexity and heterogeneity of their structures after extraction and separation seriously restrict their applications in pharmaceutical development. The increasing demands for the research on these molecules have extensively promoted the development of carbohydrate synthesis. Numerous innovative synthetic methodologies have been reported regarding the continuous expansion of the potential building blocks, catalysts, and phosphorylation reagents. This review summarizes the latest methods for enzymatic and chemical synthesis of phosphorylated saccharides, emphasizing their breakthroughs in yield, reactivity, regioselectivity, and application scope. Additionally, the anti-bacterial, anti-tumour, immunoregulatory and other biological activities of some phosphorylated saccharides and their applications were also reviewed. Their structure-activity relationship and mechanism of action were discussed and the key phosphorylation characteristics, sites and extents responsible for observed biological activities were emphasised. This paper will provide a reference for the application of phosphorylated saccharide in the research of carbohydrate-based drugs in the future.
Collapse
Affiliation(s)
- Ning Wang
- Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China; Henan Polysaccharide Research Center, Zhengzhou 450046, Henan, China; Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou 450046, Henan, China
| | - Yuanfang Kong
- Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China; Henan Polysaccharide Research Center, Zhengzhou 450046, Henan, China; Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou 450046, Henan, China
| | - Jieming Li
- Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China; Henan Polysaccharide Research Center, Zhengzhou 450046, Henan, China; Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou 450046, Henan, China
| | - Yulong Hu
- Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China; Henan Polysaccharide Research Center, Zhengzhou 450046, Henan, China; Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou 450046, Henan, China
| | - Xiaofei Li
- Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China; Henan Polysaccharide Research Center, Zhengzhou 450046, Henan, China; Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou 450046, Henan, China
| | - Shiqing Jiang
- Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China; Henan Polysaccharide Research Center, Zhengzhou 450046, Henan, China; Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou 450046, Henan, China
| | - Chunhong Dong
- Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China; Henan Polysaccharide Research Center, Zhengzhou 450046, Henan, China; Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou 450046, Henan, China.
| |
Collapse
|
2
|
Wang Z, Huang J, Wang B, Hu W, Xie D, Liu S, Qiao Y. Co-hydrothermal carbonization of sewage sludge and model compounds of food waste: Influence of mutual interaction on nitrogen transformation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150997. [PMID: 34656588 DOI: 10.1016/j.scitotenv.2021.150997] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/27/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
This study reports the transformation behavior of nitrogen during the co-hydrothermal carbonization of sewage sludge and model compounds (microcrystalline cellulose, starch, lignin, and xylan) of food waste at 220 °C, with a focus on the reaction routes between starch/xylan and NH4+. Most of the nitrogen in the raw sludge was transformed into organic-N (44.6%) and NH4+ (23.3%) in the aqueous product, and only 20.3% of nitrogen was retained in the hydrochar. The added model compounds could react with organic-N (i.e., amino acids and amines) and NH4+ in aqueous products through Maillard and Mannich reactions, generating heterocyclic-N (especially pyrrole-N) which further polymerizes to form nitrogen-containing polyaromatic hydrochar. This leads to an increase in the retention rate of nitrogen to 36.8-50.9%, especially upon the addition of starch and xylan. During the hydrothermal carbonization of starch/xylan in the NH4+ solution, the polymers are first hydrolyzed into monomers, followed by their further reaction with NH4+ to generate pyrrole-N and pyridine-N in aqueous products (especially xylan), and the pyrrole-N can then polymerize with aromatic clusters to form hydrochar-N. The results show that the model compounds of food waste substantially affect the nitrogen transformation pathways during hydrothermal carbonization, mainly because of the structures of their monomers. These findings can guide the production of sludge-based hydrochar with the targeted regulation of nitrogen content and species.
Collapse
Affiliation(s)
- Zhenqi Wang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jingchun Huang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Bo Wang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Hu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Di Xie
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shuai Liu
- Hunan province Key Laboratory of Efficient & Clean Thermal Power Generation Technologies, State Grid Hunan Electric Power Corporation Research Institute, Changsha 410007, China
| | - Yu Qiao
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
3
|
Hackbusch S, Watson A, Franz AH. Synthesis and conformational analysis of d-gluco-pyranosyl-(6,6′)-d-gluco-pyranuronate, a model compound for the inter-glycan 6,6′-ester linkage. Carbohydr Res 2018; 458-459:1-12. [DOI: 10.1016/j.carres.2018.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/07/2018] [Accepted: 01/16/2018] [Indexed: 11/26/2022]
|