1
|
Arbatsky NP, Shashkov AS, Shneider MM, Mikhailova YV, Shelenkov AA, Sheck EA, Kasimova AA, Kalinchuk NA, Kenyon JJ, Knirel YA. The K129 capsular polysaccharide produced by Acinetobacter baumannii MAR 15-4076 has the same composition as K84 but differs in the linkage between units altering the overall branching topology. Carbohydr Res 2024; 545:109273. [PMID: 39326204 DOI: 10.1016/j.carres.2024.109273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024]
Abstract
Capsular polysaccharide (CPS) is a heteroglycan that coats the cell surface of most isolates of the important Gram-negative bacterial pathogen, Acinetobacter baumannii. Strain MAR 15-4076, a clinical isolate recovered in Russia in 2015, was found to carry the KL129 sequence at the CPS biosynthesis K locus. The CPS was isolated from the strain and studied by sugar analysis, Smith degradation, one- and two-dimensional 1H and 13C NMR spectroscopy. It was composed of branched pentasaccharide units that include a →3)-α-l-Rhap-(1 → 3)-α-l-Rhap-(1 → 3)-β-d-GlcpNAc-(1→ mainchain and α-d-ManpNAc-(1 → 3)-l-Rhap side branch. Though the pentasaccharide units are identical to those that make up the K84 CPS produced by A. baumannii LUH5540, the units are linked differently via the substitution of an alternate l-Rhap residue, resulting in a difference in the overall topology of the CPS. This was due to the replacement of the Wzy polymerase gene encoded at the K locus.
Collapse
Affiliation(s)
- Nikolay P Arbatsky
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| | - Alexander S Shashkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail M Shneider
- M. M. Shemyakin & Y. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | | | - Eugene A Sheck
- Institute of Antimicrobial Chemotherapy (IAC), Smolensk State Medical University, Smolensk, Russia
| | - Anastasia A Kasimova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Nadezhda A Kalinchuk
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Johanna J Kenyon
- School of Pharmacy and Medical Sciences, Health Group, Griffith University, Gold Coast Campus, Southport, Australia; Institute for Biomedicine and Glycomics, Griffith University, Gold Coast Campus, Southport, Australia.
| | - Yuriy A Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
2
|
Kasimova AA, Kolganova AS, Shashkov AS, Shneider MM, Mikhailova YV, Shelenkov AA, Popova AV, Knirel YA, Perepelov AV, Kenyon JJ. Structure of the K141 capsular polysaccharide produced by Acinetobacter baumannii isolate KZ1106 that carries KL141 at the chromosomal K locus. Carbohydr Res 2024; 538:109097. [PMID: 38555658 DOI: 10.1016/j.carres.2024.109097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/02/2024]
Abstract
The structure of the K141 type capsular polysaccharide (CPS) produced by Acinetobacter baumannii KZ1106, a clinical isolate recovered from Kazakhstan in 2016, was established by sugar analyses and one- and two-dimensional 1H and 13C NMR spectroscopy. The CPS was shown to consist of branched tetrasaccharide repeating units (K-units) with the following structure: This structure was found to be consistent with the genetic content of the KL141 CPS biosynthesis gene cluster at the chromosomal K locus in the KZ1106 whole genome sequence. Assignment of the encoded enzymes allowed the first sugar of the K unit to be identified, which revealed that the β-d-GlcpNAc-(1→3)-d-GlcpNAc bond is the linkage between K-units formed by the WzyKL141 polymerase.
Collapse
Affiliation(s)
- Anastasiya A Kasimova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Anna S Kolganova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia; D. I. Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - Alexander S Shashkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail M Shneider
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997, Moscow, Russia
| | | | | | - Anastasiya V Popova
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, Russia
| | - Yuriy A Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Andrey V Perepelov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Johanna J Kenyon
- School of Pharmacy and Medical Sciences, Health Group, Griffith University, Gold Coast, Australia; Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
3
|
Karampatakis T, Tsergouli K, Behzadi P. Pan-Genome Plasticity and Virulence Factors: A Natural Treasure Trove for Acinetobacter baumannii. Antibiotics (Basel) 2024; 13:257. [PMID: 38534692 DOI: 10.3390/antibiotics13030257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/17/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Acinetobacter baumannii is a Gram-negative pathogen responsible for a variety of community- and hospital-acquired infections. It is recognized as a life-threatening pathogen among hospitalized individuals and, in particular, immunocompromised patients in many countries. A. baumannii, as a member of the ESKAPE group, encompasses high genomic plasticity and simultaneously is predisposed to receive and exchange the mobile genetic elements (MGEs) through horizontal genetic transfer (HGT). Indeed, A. baumannii is a treasure trove that contains a high number of virulence factors. In accordance with these unique pathogenic characteristics of A. baumannii, the authors aim to discuss the natural treasure trove of pan-genome and virulence factors pertaining to this bacterial monster and try to highlight the reasons why this bacterium is a great concern in the global public health system.
Collapse
Affiliation(s)
| | - Katerina Tsergouli
- Microbiology Department, Agios Pavlos General Hospital, 55134 Thessaloniki, Greece
| | - Payam Behzadi
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran 37541-374, Iran
| |
Collapse
|
4
|
Kasimova AA, Sharar NS, Ambrose SJ, Knirel YA, Shneider MM, Timoshina OY, Popova AV, Perepelov AV, Dmitrenok AS, Hsu LY, Hall RM, Kenyon JJ. The Acinetobacter baumannii K70 and K9 capsular polysaccharides consist of related K-units linked by the same Wzy polymerase and cleaved by the same phage depolymerases. Microbiol Spectr 2023; 11:e0302523. [PMID: 37975684 PMCID: PMC10715181 DOI: 10.1128/spectrum.03025-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/12/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE Bacteriophage show promise for the treatment of Acinetobacter baumannii infections that resist all therapeutically suitable antibiotics. Many tail-spike depolymerases encoded by phage that are able to degrade A. baumannii capsular polysaccharide (CPS) exhibit specificity for the linkage present between K-units that make up CPS polymers. This linkage is formed by a specific Wzy polymerase, and the ability to predict this linkage using sequence-based methods that identify the Wzy at the K locus could assist with the selection of phage for therapy. However, little is known about the specificity of Wzy polymerase enzymes. Here, we describe a Wzy polymerase that can accommodate two different but similar sugars as one of the residues it links and phage depolymerases that can cleave both types of bond that Wzy forms.
Collapse
Affiliation(s)
- Anastasiya A. Kasimova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Nowshin S. Sharar
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Stephanie J. Ambrose
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, Australia
| | - Yuriy A. Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail M. Shneider
- M. M. Shemyakin and Y. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Olga Y. Timoshina
- M. M. Shemyakin and Y. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Anastasiya V. Popova
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, Russia
| | - Andrey V. Perepelov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Andrey S. Dmitrenok
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Li Yang Hsu
- Saw Swee Hock School of Public Health, National University of Singapore, Queenstown, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, Singapore
| | - Ruth M. Hall
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, Australia
| | - Johanna J. Kenyon
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
5
|
Duan L, Nie Q, Hu Y, Wang L, Guo K, Zhou Z, Song X, Tu Y, Liu H, Hansen T, Sun JS, Zhang Q. Stereoselective Synthesis of the O-antigen of A. baumannii ATCC 17961 Using Long-Range Levulinoyl Group Participation. Angew Chem Int Ed Engl 2023; 62:e202306971. [PMID: 37327196 DOI: 10.1002/anie.202306971] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/18/2023]
Abstract
Herein, we described the first synthesis of the pentasaccharide and decasaccharide of the A. baumannii ATCC 17961 O-antigen for developing a synthetic carbohydrate-based vaccine against A. baumannii infection. The efficient synthesis of the rare sugar 2,3-diacetamido-glucuronate was achieved using our recently introduced organocatalytic glycosylation method. We found, for the first time, that long-range levulinoyl group participation via a hydrogen bond can result in a significantly improved β-selectivity in glycosylations. This solves the stereoselectivity problem of highly branched galactose acceptors. The proposed mechanism was supported by control experiments and DFT computations. Benefiting from the long-range levulinoyl group participation strategy, the pentasaccharide donor and acceptor were obtained via an efficient [2+1+2] one-pot glycosylation method and were used for the target decasaccharide synthesis.
Collapse
Affiliation(s)
- Liangshen Duan
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nan Chang, 330022, China
| | - Qin Nie
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nan Chang, 330022, China
| | - Yongxin Hu
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nan Chang, 330022, China
| | - Liming Wang
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nan Chang, 330022, China
| | - Kaiyan Guo
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nan Chang, 330022, China
| | - Zhuoyi Zhou
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nan Chang, 330022, China
| | - Xu Song
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nan Chang, 330022, China
| | - Yuanhong Tu
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nan Chang, 330022, China
| | - Hui Liu
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nan Chang, 330022, China
| | - Thomas Hansen
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam (The, Netherlands
| | - Jian-Song Sun
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nan Chang, 330022, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, and Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Qingju Zhang
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nan Chang, 330022, China
| |
Collapse
|
6
|
Roshini J, Patro LPP, Sundaresan S, Rathinavelan T. Structural diversity among Acinetobacter baumannii K-antigens and its implication in the in silico serotyping. Front Microbiol 2023; 14:1191542. [PMID: 37415807 PMCID: PMC10320297 DOI: 10.3389/fmicb.2023.1191542] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/30/2023] [Indexed: 07/08/2023] Open
Abstract
Acinetobacter baumannii is an emerging opportunistic pathogen. It exhibits multi-, extreme-, and pan-drug resistance against several classes of antibiotics. Capsular polysaccharide (CPS or K-antigen) is one of the major virulence factors which aids A. baumannii in evading the host immune system. K-antigens of A. baumannii exploit the Wzx/Wzy-dependent pathway that involves 13 different proteins for its assembly and transport onto the outer membrane. A total of 64 (out of 237 K-locus(KL) types) known K-antigen sugar repeating structures are discussed here and are classified into seven groups based on their initial sugars, QuiNAc4NAc, GalNAc, GlcNAc, Gal, QuiNAc/FucNAc, FucNAc, and GlcNAc along with Leg5Ac7Ac/Leg5Ac7R. Thus, the corresponding seven initializing glycosyltransferases (ItrA1, ItrA2, ItrA3, ItrA4, ItrB1, ItrB3, and ItrA3 along with ItrB2) exhibit serotype specificity. The modeled 3D-structural repository of the 64 K-antigens can be accessed at https://project.iith.ac.in/ABSD/k_antigen.html. The topology of K-antigens further reveals the presence of 2-6 and 0-4 sugar monomers in the main and side chains, respectively. The presence of negatively (predominant) or neutrally charged K-antigens is observed in A. baumannii. Such diversity in the K-antigen sugar composition provides the K-typing specificity (viz., 18-69% in terms of reliability) for Wza, Wzb, Wzc, Wzx, and Wzy proteins involved in the Wzx/Wzy-dependent pathway. Interestingly, the degree of uniqueness of these proteins among different K-types is estimated to be 76.79%, considering the 237 reference sequences. This article summarizes the A. baumannii K-antigen structural diversity and creation of a K-antigen digital repository and provides a systematic analysis of the K-antigen assembly and transportation marker proteins.
Collapse
|
7
|
Shadan A, Pathak A, Ma Y, Pathania R, Singh RP. Deciphering the virulence factors, regulation, and immune response to Acinetobacter baumannii infection. Front Cell Infect Microbiol 2023; 13:1053968. [PMID: 36968113 PMCID: PMC10038080 DOI: 10.3389/fcimb.2023.1053968] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Deciphering the virulence factors, regulation, and immune response to Acinetobacter baumannii infectionAcinetobacter baumannii is a gram-negative multidrug-resistant nosocomial pathogen and a major cause of hospital acquired infetions. Carbapenem resistant A. baumannii has been categorised as a Priority1 critial pathogen by the World Health Organisation. A. baumannii is responsible for infections in hospital settings, clinical sectors, ventilator-associated pneumonia, and bloodstream infections with a mortality rates up to 35%. With the development of advanced genome sequencing, molecular mechanisms of manipulating bacterial genomes, and animal infection studies, it has become more convenient to identify the factors that play a major role in A. baumannii infection and its persistence. In the present review, we have explored the mechanism of infection, virulence factors, and various other factors associated with the pathogenesis of this organism. Additionally, the role of the innate and adaptive immune response, and the current progress in the development of innovative strategies to combat this multidrug-resistant pathogen is also discussed.
Collapse
Affiliation(s)
- Afreen Shadan
- Department of Microbiology, Dr. Shyama Prasad Mukherjee University, Ranchi, Jharkhand, India
| | - Avik Pathak
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India
| | - Ying Ma
- College of Resources and Environment, Southwest University, Chongqing, China
- *Correspondence: Ying Ma, ; Ranjana Pathania, ; Rajnish Prakash Singh,
| | - Ranjana Pathania
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India
- *Correspondence: Ying Ma, ; Ranjana Pathania, ; Rajnish Prakash Singh,
| | - Rajnish Prakash Singh
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Ranchi, Jharkhand, India
- *Correspondence: Ying Ma, ; Ranjana Pathania, ; Rajnish Prakash Singh,
| |
Collapse
|
8
|
Sun J, Zhong X, Sun D, Cao X, Yao F, Shi L, Liu Y. Structural characterization of polysaccharides recovered from extraction residue of ginseng root saponins and its fruit nutrition preservation performance. Front Nutr 2022; 9:934927. [PMID: 35978961 PMCID: PMC9376600 DOI: 10.3389/fnut.2022.934927] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/07/2022] [Indexed: 11/18/2022] Open
Abstract
Polysaccharides recovered from extraction residue of ginseng root saponins, i.e., ginsenosides-extracting residue polysaccharides (GRP), were separated into two fractions, GRP-1 and GRP-2. Fourier infrared and nuclear magnetic resonance spectra, as well as high-performance liquid chromatography and gel permeation chromatography measurements, showed GRP-1 was composed of mainly starch-like glucans and GRP-2, relatively a smaller portion, was a mixture of heteropolysaccharides composed of starch-like glucans, rhamnogalacturonan-I pectin, and arabinogalactans, and they had similar molecular weights. These results proved that the structure of GRP was not destroyed and GRP still maintained strong antioxidant activities. In addition, GRP coating on surfaces of fruit slowed their deterioration and maintained their nutritional effects. Correlation and PCA analyses on various quality and antioxidant parameters supported the above findings and a possible mechanism in fruit preservation was then proposed. Knowing the structural features and bioactivities of GRP gives insights into its application. Specifically, GRP served as an environmentally friendly coating that can be used to preserve the nutrients and other quality indicators of strawberries and fresh-cut apples, paving the way for future new approaches to food preservation using polysaccharides or other natural products.
Collapse
Affiliation(s)
- Jing Sun
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Xinyu Zhong
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Dandan Sun
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.,Shandong Academy of Chinese Medicine, Jinan, China
| | - Xinxin Cao
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Fan Yao
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Lingling Shi
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Yujun Liu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| |
Collapse
|
9
|
Kasimova AA, Shneider MM, Edelstein MV, Dzhaparova AA, Shashkov AS, Knirel YA, Kenyon JJ. Structure of the K98 capsular polysaccharide from Acinetobacter baumannii REV-1184 containing a cyclic pyruvic acid acetal. Int J Biol Macromol 2022; 218:447-455. [PMID: 35872312 DOI: 10.1016/j.ijbiomac.2022.07.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/03/2022] [Accepted: 07/18/2022] [Indexed: 11/05/2022]
Abstract
The K98 capsular polysaccharide (CPS) from the Acinetobacter baumannii clinical isolate, REV-1184, was studied by sugar analysis and Smith degradation along with one- and two-dimensional 1H and 13C NMR spectroscopy and high-resolution electrospray ionization mass spectrometry. The CPS was found to consist of linear tetrasaccharide repeats (K-units) that include one residue each of d-GlcpNAc, d-GalpNAc, 2-acetamido-2-deoxy-d-galacturonic acid (d-GalpNAcA), and 2-acetamido-2,6-dideoxy-d-glucose (N-acetylquinovosamine, d-QuipNAc), with the GalpNAc residue decorated with a (R)-configurated 4,6-pyruvic acid acetal group. The CPS has a similar composition to that of A. baumannii K4 but the topology of the tetrasaccharide K-unit is different (linear in K98 versus branched in K4). This was due to a difference in sequence for the Wzy polymerases encoded by the CPS biosynthesis gene clusters KL98 and KL4, with the WzyK98 polymerase forming a β-d-QuipNAc-(1→3)-d-GalpNAc linkage between the K98 units.
Collapse
Affiliation(s)
- Anastasiya A Kasimova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail M Shneider
- M. M. Shemyakin and Y. A.Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia
| | - Mikhail V Edelstein
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, 214019 Smolensk, Russia.
| | - Alina A Dzhaparova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander S Shashkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Yuriy A Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Johanna J Kenyon
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
10
|
Arbatsky NP, Shashkov AS, Shneider MM, Popova AV, Kasimova AA, Miroshnikov KA, Knirel YA, Hall RM, Kenyon JJ. The K89 capsular polysaccharide produced by Acinetobacter baumannii LUH5552 consists of a pentameric repeat-unit that includes a 3-acetamido-3,6-dideoxy-d-galactose residue. Int J Biol Macromol 2022; 217:515-521. [PMID: 35843396 DOI: 10.1016/j.ijbiomac.2022.07.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/17/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022]
Abstract
Acinetobacter baumannii isolate LUH5552 carries the KL89 capsule biosynthesis gene cluster. Capsular polysaccharide (CPS) isolated from LUH5552 was analyzed by sugar analysis, Smith degradation, and one- and two-dimensional 1H and 13C NMR spectroscopy. The K89 CPS structure has not been seen before in A. baumannii CPS structures resolved to date and includes a 3-acetamido-3,6-dideoxy-d-galactose (d-Fucp3NAc) residue which is rare amongst A. baumannii CPS. The K89 CPS has a →3)-α-d-GalpNAc-(1→3)-β-d-GlcpNAc-(1→ main chain with a β-d-Glcp-(1→2)-β-d-Fucp3NAc-(1→6)-d-Glcp side branch that is α-(1→4) linked to d-GalpNAc. The roles of the Wzy polymerase and the four glycosyltransferases encoded by the KL89 gene cluster in the biosynthesis of the K89 CPS were assigned. Two glycosyltransferases, Gtr121 and Gtr122, link the d-Fucp3NAc to its neighboring sugars.
Collapse
Affiliation(s)
- Nikolay P Arbatsky
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander S Shashkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail M Shneider
- M. M. Shemyakin & Y. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Anastasiya V Popova
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia; State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, Russia
| | - Anastasiya A Kasimova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Konstantin A Miroshnikov
- M. M. Shemyakin & Y. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Yuriy A Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ruth M Hall
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Johanna J Kenyon
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
11
|
A Film of Chitosan Blended with Ginseng Residue Polysaccharides as an Antioxidant Packaging for Prolonging the Shelf Life of Fresh-Cut Melon. COATINGS 2022. [DOI: 10.3390/coatings12040468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ginseng residue polysaccharides (GRP) at three levels were excellently blended into chitosan to form antioxidant composite films, which exhibited higher density, opacity and moisture, as well as lower water vapor permeability, tensile strength and elongation ratio than those of neat chitosan film. Thermogravimetry evidenced no difference in stability, and SEM and AFM revealed smooth and dense surfaces with no cracks and micropores, whereas structural analyses disclosed slight changes in films’ structures after adding GRP. A chitosan film containing 0.5% GRP (Chitosan + GRP) was then employed for a fruit preservation study. Fresh-cut melon covered with Chitosan + GRP displayed delayed deteriorating compared with other groups. A possible antioxidant mechanism in fruit preservation was then suggested, and PCA and correlation analyses supported these findings. The results demonstrated that our antioxidant chitosan films incorporated with GRP are quite promising for enabling the food industry to produce eco-friendly and sustainable packaging.
Collapse
|
12
|
Arbatsky NP, Popova AV, Shneider MM, Shashkov AS, Hall RM, Kenyon JJ, Knirel YA. Structure of the K87 capsular polysaccharide and KL87 gene cluster of Acinetobacter baumannii LUH5547 reveals a heptasaccharide repeating unit. Carbohydr Res 2021; 509:108439. [PMID: 34555685 DOI: 10.1016/j.carres.2021.108439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/09/2021] [Accepted: 08/31/2021] [Indexed: 12/31/2022]
Abstract
K87 capsular polysaccharide (CPS) was isolated from Acinetobacter baumannii isolate LUH5547 that carries the KL87 capsule biosynthesis gene cluster at the chromosomal K locus. Studies by sugar analysis, selective chemical cleavages, and 1D and 2D 1H and 13C NMR spectroscopy showed that the CPS has a branched heptasaccharide repeat (K unit) containing one residue each of d-glucose (d-Glсp), d-glucuronic acid (d-GlсpA), N-acetyl-d-glucosamine (d-GlсpNAc), 6-deoxy-l-talose (l-6dTalp), and three residues of l-rhamnose (l-Rhap). The following structure of the CPS was established: →3)-α-L-Rhap-(1→2)-α-L-Rhap-(1→3)-α-L-6dTalp-(1→3)-β-D-GlcpNAc-(1→2↑1β-D-GlcpA-(4←1)-α-D-Glcp(2←1)-α-L-Rhap The position of a minor O-acetyl group present in the CPS was not determined. Functions of enzymes coded by genes in the KL87 gene cluster were tentatively assigned and found to be consistent with the CPS structure.
Collapse
Affiliation(s)
- Nikolay P Arbatsky
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Anastasiya V Popova
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia; State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, Russia
| | - Mikhail M Shneider
- M. M. Shemyakin & Y. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander S Shashkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ruth M Hall
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Johanna J Kenyon
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology. Brisbane, Australia.
| | - Yuriy A Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
13
|
Specific Interaction of Novel Friunavirus Phages Encoding Tailspike Depolymerases with Corresponding Acinetobacter baumannii Capsular Types. J Virol 2021; 95:JVI.01714-20. [PMID: 33268523 PMCID: PMC8092837 DOI: 10.1128/jvi.01714-20] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Acinetobacter baumannii is one of the most clinically important nosocomial pathogens. The World Health Organisation refers it to its «critical priority» category to develop new strategies for effective therapy. This microorganism is capable of producing structurally diverse capsular polysaccharides (CPSs), which serve as primary receptors for A. baumannii bacteriophages carrying polysaccharide-depolymerasing enzymes. In this study, eight novel bacterial viruses that specifically infect A. baumannii strains belonging to K2/K93, K32, K37, K44, K48, K87, K89 and K116 capsular types were isolated and characterized. The overall genomic architecture demonstrated that these viruses are representatives of the Friunavirus genus of the family Autographiviridae The linear double-stranded DNA phage genomes of 41,105-42,402 bp share high nucleotide sequence identity, except for genes encoding structural depolymerases or tailspikes which determine the host specificity. Deletion mutants lacking N-terminal domains of tailspike proteins were cloned, expressed and purified. The structurally defined CPSs of the phage bacterial hosts were cleaved with the specific recombinant depolymerases, and the resultant oligosaccharides that corresponded to monomers or/and dimers of the CPS repeats (K-units) were isolated. Structures of the derived oligosaccharides were established by nuclear magnetic resonance spectroscopy and high-resolution electrospray ionization mass spectrometry. The data obtained showed that all depolymerases studied were glycosidases that cleave specifically the A. baumannii CPSs by the hydrolytic mechanism, in most cases, by the linkage between the K-units.IMPORTANCE Acinetobacter baumannii, a nonfermentative, Gram-negative, aerobic bacterium, is one of the most significant nosocomial pathogens. The pathogenicity of A. baumannii is based on the cooperative action of many factors, one of them being the production of capsular polysaccharides (CPSs) that surround bacterial cells with a thick protective layer. Polymorphism of the chromosomal capsule loci is responsible for the observed high structural diversity of the CPSs. In this study, we describe eight novel lytic phages which have different tailspike depolymerases (TSDs) determining the interaction of the viruses with corresponding A. baumannii capsular types (K-types). Moreover, we elucidate the structures of oligosaccharide products obtained by cleavage of the CPSs by the recombinant depolymerases. We believe that as the TSDs determine phage specificity, the diversity of their structures should be taken into consideration as selection criteria for inclusion of certain phage candidate to the cocktail designed to control A. baumannii with different K-types.
Collapse
|
14
|
Involvement of a multifunctional rhamnosyltransferase in the synthesis of three related Acinetobacter baumannii capsular polysaccharides, K55, K74 and K85. Int J Biol Macromol 2020; 166:1230-1237. [PMID: 33159946 DOI: 10.1016/j.ijbiomac.2020.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 07/22/2020] [Accepted: 11/02/2020] [Indexed: 12/17/2022]
Abstract
KL55, KL74, and KL85 capsular polysaccharide (CPS) biosynthesis loci in Acinetobacter baumannii BAL_204, BAL_309, and LUH5543 genomes, respectively, are related and each contains genes for l-Rhap and d-GlcpA synthesis. The CPSs were isolated and studied by sugar analysis, Smith degradation, and 1H and 13C NMR spectroscopy. The K55 and K74 CPSs are built up of branched octasaccharide repeats (K units) containing one residue each of d-GlcpA and d-GlcpNAc and six residues of l-Rhap. The K55 unit differs from the K74 unit in the linkage between D-GlcpA and an l-Rhap residue in the K unit (1 → 3 versus 1 → 2) and linkage between K units. However, most K units in the isolated K74 CPS were modified by β-elimination of a side-chain α-l-Rhap-(1 → 3)-α-l-Rhap disaccharide from position 4 of GlcA to give 4-deoxy-l-threo-hex-4-enuronic acid (1:~3 ratio of intact and modified units). The K85 CPS has a branched heptasaccharide K unit similar to the K74 unit but with one fewer α-l-Rhap residue in the side chain. In contrast to previous findings on A. baumannii CPSs, each K locus includes fewer glycosyltransferase (Gtr) genes than the number required to form all linkages in the K units. Hence, one Gtr appears to be multifunctional catalysing formation of two 1 → 2 and one 1 → 3 linkages between the l-Rha residues.
Collapse
|
15
|
Zhang H, Zou P, Zhao H, Qiu J, Regenstein JM, Yang X. Isolation, purification, structure and antioxidant activity of polysaccharide from pinecones of Pinus koraiensis. Carbohydr Polym 2020; 251:117078. [PMID: 33142621 DOI: 10.1016/j.carbpol.2020.117078] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023]
Abstract
The polysaccharides (PKP-E) extracted from the pinecones of Pinus koraiensis were studied, which was fractionated using DEAE-52 cellulose and Sephadex G-100. Four novel polysaccharide fractions were obtained, which were PKP-E-1-1, -1-2, -2-1, and -2-2, respectively. The structural features were characterized using HPGPC, monosaccharide composition analysis, Congo red test, periodate oxidation, Smith degradation, FTIR and NMR spectroscopy. The results showed the 4 purified fractions were non-triple helical structured heteropolysaccharides and composed of l-rhamnose, l-arabinose, d-mannose, d-glucose, and d-galactose. The fractions were mainly linked by 1→6 or 1→ glycosidic bonds and the backbone of 4 fractions was probably composed of→2, 6)-β-d-Man-(1→ and α-d-GalpA-(1→), which resembles pectin. Moreover, the antioxidant activities of the polysaccharides were measured by scavenging radical capacity tests. The PKP-E-2-1 was the most stable and active fraction, and the respective IC50 for the hydroxyl and ABTS·+ radicals were 3.0 and 23.6 mg/mL.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, Heilongjiang, China
| | - Pan Zou
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, Heilongjiang, China; Tianjin Institute of Quality Standard and Testing Technology for Agro-product, Tianjin Academy of Agricultural Sciences, Tianjin, 300380, China
| | - Haitian Zhao
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, Heilongjiang, China
| | - Junqiang Qiu
- School of Pharmacy, Hainan Medical University, Haikou, Hainan, 570100, China
| | | | - Xin Yang
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, Heilongjiang, China.
| |
Collapse
|
16
|
Leal NC, Campos TL, Rezende AM, Docena C, Mendes-Marques CL, de Sá Cavalcanti FL, Wallau GL, Rocha IV, Cavalcanti CLB, Veras DL, Alves LR, Andrade-Figueiredo M, de Barros MPS, de Almeida AMP, de Morais MMC, Leal-Balbino TC, Xavier DE, de-Melo-Neto OP. Comparative Genomics of Acinetobacter baumannii Clinical Strains From Brazil Reveals Polyclonal Dissemination and Selective Exchange of Mobile Genetic Elements Associated With Resistance Genes. Front Microbiol 2020; 11:1176. [PMID: 32655514 PMCID: PMC7326025 DOI: 10.3389/fmicb.2020.01176] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/08/2020] [Indexed: 12/13/2022] Open
Abstract
Acinetobacter baumannii is an opportunistic bacterial pathogen infecting immunocompromised patients and has gained attention worldwide due to its increased antimicrobial resistance. Here, we report a comparative whole-genome sequencing and analysis coupled with an assessment of antibiotic resistance of 46 Acinetobacter strains (45 A. baumannii plus one Acinetobacter nosocomialis) originated from five hospitals from the city of Recife, Brazil, between 2010 and 2014. An average of 3,809 genes were identified per genome, although only 2,006 genes were single copy orthologs or core genes conserved across all sequenced strains, with an average of 42 new genes found per strain. We evaluated genetic distance through a phylogenetic analysis and MLST as well as the presence of antibiotic resistance genes, virulence markers and mobile genetic elements (MGE). The phylogenetic analysis recovered distinct monophyletic A. baumannii groups corresponding to five known (ST1, ST15, ST25, ST79, and ST113) and one novel ST (ST881, related to ST1). A large number of ST specific genes were found, with the ST79 strains having the largest number of genes in common that were missing from the other STs. Multiple genes associated with resistance to β-lactams, aminoglycosides and other antibiotics were found. Some of those were clearly mapped to defined MGEs and an analysis of those revealed known elements as well as a novel Tn7-Tn3 transposon with a clear ST specific distribution. An association of selected resistance/virulence markers with specific STs was indeed observed, as well as the recent spread of the OXA-253 carbapenemase encoding gene. Virulence genes associated with the synthesis of the capsular antigens were noticeably more variable in the ST113 and ST79 strains. Indeed, several resistance and virulence genes were common to the ST79 and ST113 strains only, despite a greater genetic distance between them, suggesting common means of genetic exchange. Our comparative analysis reveals the spread of multiple STs and the genomic plasticity of A. baumannii from different hospitals in a single metropolitan area. It also highlights differences in the spread of resistance markers and other MGEs between the investigated STs, impacting on the monitoring and treatment of Acinetobacter in the ongoing and future outbreaks.
Collapse
Affiliation(s)
- Nilma C Leal
- Aggeu Magalhães Institute (IAM), Fundação Oswaldo Cruz (Fiocruz), Recife, Brazil
| | - Túlio L Campos
- Aggeu Magalhães Institute (IAM), Fundação Oswaldo Cruz (Fiocruz), Recife, Brazil
| | - Antonio M Rezende
- Aggeu Magalhães Institute (IAM), Fundação Oswaldo Cruz (Fiocruz), Recife, Brazil
| | - Cássia Docena
- Aggeu Magalhães Institute (IAM), Fundação Oswaldo Cruz (Fiocruz), Recife, Brazil
| | | | - Felipe L de Sá Cavalcanti
- Aggeu Magalhães Institute (IAM), Fundação Oswaldo Cruz (Fiocruz), Recife, Brazil.,Department of Pathology, Institute of Biological Sciences, University of Pernambuco, Recife, Brazil
| | - Gabriel L Wallau
- Aggeu Magalhães Institute (IAM), Fundação Oswaldo Cruz (Fiocruz), Recife, Brazil
| | - Igor V Rocha
- Aggeu Magalhães Institute (IAM), Fundação Oswaldo Cruz (Fiocruz), Recife, Brazil
| | | | - Dyana L Veras
- Aggeu Magalhães Institute (IAM), Fundação Oswaldo Cruz (Fiocruz), Recife, Brazil
| | - Lilian R Alves
- Department of Tropical Medicine, Federal University of Pernambuco, Recife, Brazil
| | | | | | | | | | | | - Danilo E Xavier
- Aggeu Magalhães Institute (IAM), Fundação Oswaldo Cruz (Fiocruz), Recife, Brazil
| | | |
Collapse
|
17
|
Cahill SM, Arbatsky NP, Shashkov AS, Shneider MM, Popova AV, Hall RM, Kenyon JJ, Knirel YA. Elucidation of the K32 Capsular Polysaccharide Structure and Characterization of the KL32 Gene Cluster of Acinetobacter baumannii LUH5549. BIOCHEMISTRY (MOSCOW) 2020; 85:241-247. [PMID: 32093600 DOI: 10.1134/s000629792002011x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Capsular polysaccharide (CPS), isolated from Acinetobacter baumannii LUH5549 carrying the KL32 capsule biosynthesis gene cluster, was studied by sugar analysis, Smith degradation, and one- and two-dimensional 1H and 13C NMR spectroscopy. The K32 CPS was found to be composed of branched pentasaccharide repeats (K units) containing two residues of β-D-GalpNAc and one residue of β-D-GlcpA (β-D-glucuronic acid) in the main chain and one residue each of β-D-Glcp and α-D-GlcpNAc in the disaccharide side chain. Consistent with the established CPS structure, the KL32 gene cluster includes genes for a UDP-glucose 6-dehydrogenase (Ugd3) responsible for D-GlcA synthesis and four glycosyltransferases that were assigned to specific linkages. Genes encoding an acetyltransferase and an unknown protein product were not involved in CPS biosynthesis. Whilst the KL32 gene cluster has previously been found in the global clone 2 (GC2) lineage, LUH5549 belongs to the sequence type ST354, thus demonstrating horizontal gene transfer between these lineages.
Collapse
Affiliation(s)
- S M Cahill
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - N P Arbatsky
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| | - A S Shashkov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| | - M M Shneider
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - A V Popova
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia.,State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, 142279, Russia
| | - R M Hall
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - J J Kenyon
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Y A Knirel
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
18
|
Crépin S, Ottosen EN, Chandler CE, Sintsova A, Ernst RK, Mobley HLT. The UDP-GalNAcA biosynthesis genes gna-gne2 are required to maintain cell envelope integrity and in vivo fitness in multi-drug resistant Acinetobacter baumannii. Mol Microbiol 2020; 113:153-172. [PMID: 31680352 PMCID: PMC7007346 DOI: 10.1111/mmi.14407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Acinetobacter baumannii infects a wide range of anatomic sites including the respiratory tract and bloodstream. Despite its clinical importance, little is known about the molecular basis of A. baumannii pathogenesis. We previously identified the UDP-N-acetyl-d-galactosaminuronic acid (UDP-GalNAcA) biosynthesis genes, gna-gne2, as being critical for survival in vivo. Herein, we demonstrate that Gna-Gne2 are part of a complex network connecting in vivo fitness, cell envelope homeostasis and resistance to antibiotics. The ∆gna-gne2 mutant exhibits a severe fitness defect during bloodstream infection. Capsule production is abolished in the mutant strain, which is concomitant with its inability to survive in human serum. In addition, the ∆gna-gne2 mutant was more susceptible to vancomycin and unable to grow on MacConkey plates, indicating an alteration in cell envelope integrity. Analysis of lipid A by mass spectrometry showed that the hexa- and hepta-acylated species were affected in the gna-gne2 mutant. Finally, the ∆gna-gne2 mutant was more susceptible to several classes of antibiotics. Together, this study demonstrates the importance of UDP-GalNAcA in the pathobiology of A. baumannii. By interrupting its biosynthesis, we showed that this molecule plays a critical role in capsule biosynthesis and maintaining the cell envelope homeostasis.
Collapse
Affiliation(s)
- Sébastien Crépin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Elizabeth N Ottosen
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Courtney E Chandler
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Anna Sintsova
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Robert K Ernst
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Harry L T Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
19
|
Kenyon JJ, Senchenkova SYN, Shashkov AS, Shneider MM, Popova AV, Knirel YA, Hall RM. K17 capsular polysaccharide produced by Acinetobacter baumannii isolate G7 contains an amide of 2-acetamido-2-deoxy-d-galacturonic acid with d-alanine. Int J Biol Macromol 2019; 144:857-862. [PMID: 31715229 DOI: 10.1016/j.ijbiomac.2019.09.163] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 11/30/2022]
Abstract
The K17 capsular polysaccharide (CPS) produced by Acinetobacter baumannii G7, which carries the KL17 configuration at the capsule biosynthesis locus, was isolated and studied by chemical methods along with one- and two-dimensional 1H and 13C NMR spectroscopy. Selective cleavage of the glycosidic linkage of a 2,4-diacetamido-2,4,6-trideoxy-d-glucose (d-QuiNAc4NAc) residue by (i) trifluoroacetic acid solvolysis or (ii) alkaline β-elimination (NaOH-NaBH4) of the 4-linked D-alanine amide of a 2-acetamido-2-deoxy-d-galacturonic acid residue (d-GalNAcA6DAla) yielded trisaccharides that were isolated by Fractogel TSK HW-40 gel-permeation chromatography and identified by using NMR spectroscopy and high-resolution electrospray ionization mass spectrometry. The following structure was established for the trisaccharide repeat (K unit) of the CPS: →4)-α-d-GalpNAcA6dAla-(1→4)-α-d-GalpNAcA-(1→3)-β-d-QuipNAc4NAc-(1→ . The presence of the itrA1 gene coding for the initial glycosylphosphotransferase in the KL17 gene cluster established the first sugar of the K unit as d-QuipNAc4NAc. KL17 includes genes for three transferases that had been annotated previously as glycosyltransferases (Gtrs). As only two Gtrs are required for the K17 structure and one d-GalpNAcA residue is modified by a d-alanine amide, these assignments were re-assessed. One transferase was found to belong to the ATPgrasp_TupA protein family that includes d-alanine-d-alanine ligases, and thus was renamed Alt1 (alanine transferase). Alt1 represents a novel family that amidate the carboxyl group of d-GalpNAcA or d-GalpA.
Collapse
Affiliation(s)
- Johanna J Kenyon
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia.
| | - Sof Ya N Senchenkova
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander S Shashkov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail M Shneider
- M. M. Shemyakin & Y. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, Smolensk, Russia
| | - Anastasia V Popova
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, Smolensk, Russia; Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia; State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, Russia
| | - Yuriy A Knirel
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ruth M Hall
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| |
Collapse
|
20
|
Kenyon JJ, Arbatsky NP, Shneider MM, Popova AV, Dmitrenok AS, Kasimova AA, Shashkov AS, Hall RM, Knirel YA. The K46 and K5 capsular polysaccharides produced by Acinetobacter baumannii NIPH 329 and SDF have related structures and the side-chain non-ulosonic acids are 4-O-acetylated by phage-encoded O-acetyltransferases. PLoS One 2019; 14:e0218461. [PMID: 31220143 PMCID: PMC6586298 DOI: 10.1371/journal.pone.0218461] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/03/2019] [Indexed: 12/01/2022] Open
Abstract
Acinetobacter baumannii isolate NIPH 329 carries a novel capsular polysaccharide (CPS) gene cluster, designated KL46, that is closely related to the KL5 locus in A. baumannii isolate SDF but includes genes for synthesis of 5,7-diacetamido-3,5,7,9-tetradeoxy-l-glycero-l-manno-non-2-ulosonic (di-N-acetylpseudaminic) acid (Pse5Ac7Ac) instead of the corresponding D-glycero-D-galacto isomer (di-N-acetyllegionaminic acid) (Leg5Ac7Ac). In agreement with the genetic content of KL46, chemical studies of the K46 CPS produced by NIPH 329 revealed a branched tetrasaccharide repeat (K unit) with an overall structure the same as K5 from SDF but with â-Pse5Ac7Ac replacing α-Leg5Ac7Ac. As for K5, the K46 unit begins with d-GalpNAc and includes α-d-GlcpNAc-(1→3)-d-GalpNAc and α-d-Galp-(1→6)-d-GlcpNAc linkages, formed by Gtr14 and Gtr15 glycosyltransferases, respectively. The Gtr94K46 glycosyltransferase, which is related to Gtr13K5, links Pse5Ac7Ac to d-Galp in the growing K unit via a â-(2→6) linkage. Nearly identical Wzy enzymes connect the K46 and K5 units via a α-D-GalpNAc-(1→3)-α-D-Galp linkage to form closely related CPSs. Both Pse5Ac7Ac in K46 and Leg5Ac7Ac in K5 are acetylated at O4 but no acetyltransferase gene is present in KL46 or KL5. Related acetyltransferases were found encoded in the NIPH 329 and SDF genomes, but not in other strains carrying an unacetylated Pse or Leg derivative in the CPS. The genes encoding the acetyltransferases were in different putative phage genomes. However, related acetyltransferases were rare among the >3000 publically available genome sequences.
Collapse
Affiliation(s)
- Johanna J. Kenyon
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
- * E-mail:
| | - Nikolay P. Arbatsky
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail M. Shneider
- M. M. Shemyakin & Y. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Anastasiya V. Popova
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, Russia
| | - Andrei S. Dmitrenok
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Anastasiya A. Kasimova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Higher Chemical College of the Russian Academy of Sciences, D. I. Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - Alexander S. Shashkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ruth M. Hall
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Yuriy A. Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
21
|
Senchenkova SN, Kenyon JJ, Jia T, Popova AV, Shneider MM, Kasimova AA, Shashkov AS, Liu B, Hall RM, Knirel YA. The K90 capsular polysaccharide produced by Acinetobacter baumannii LUH5553 contains di-N-acetylpseudaminic acid and is structurally related to the K7 polysaccharide from A. baumannii LUH5533. Carbohydr Res 2019; 479:1-5. [PMID: 31075648 DOI: 10.1016/j.carres.2019.04.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/23/2019] [Accepted: 04/23/2019] [Indexed: 12/31/2022]
Abstract
Acinetobacter baumannii isolate LUH5553 carries the KL90 capsule gene cluster, which includes genes for three glycosyltransferases (Gtrs) and the ItrA3 initiating transferase, as well as a set of genes for synthesis of a higher sugar, 5,7-diacetamido-3,5,7,9-tetradeoxy-l-glycero-l-manno-non-2-ulosonic (di-N-acetylpseudaminic) acid (Pse5Ac7Ac). The K90 capsular polysaccharide (CPS) has a tetrasaccharide repeat (K90 unit), which begins with d-GlcpNAc and contains Pse5Ac7Ac. The higher sugar was cleaved by mild acid hydrolysis of the CPS, and structures of the initial and modified polysaccharides were established by 1D and 2D 1H and 13C NMR spectroscopy. K90 contains α-d-Galp-(1 → 6)-d-GlcpNAc and α-d-GlcpNAc-(1 → 3)-d-GlcpNAc fragments, and formation of these glycosidic linkages is catalysed respectively by Gtr14 and Gtr15. The gtr14 and gtr15 genes occur in several A. baumannii KL gene clusters, including KL5 and KL7 that carry itrA2 rather than itrA3. As ItrA2 introduces d-GalpNAc rather than d-GlcpNAc as the first monosaccharide, Gtr15 can transfer d-GlcpNAc to either of these amino sugars, suggesting that this enzyme has relaxed specificity. Consequently, the third, novel glycosyltransferase, Gtr163, forms the β-(2 → 3) linkage between Pse5Ac7Ac and d-Galp. Wzy polymerases encoded by KL90 and KL7 are 54% identical and form the same linkage between the K units to give branched polysaccharides with the same main chain but different disaccharide side chains, β-Pse5Ac7Ac-(2 → 3)-d-Galp in K90 and α-Leg5Ac7Ac-(2 → 6)-d-Galp in K7.
Collapse
Affiliation(s)
- Sof'ya N Senchenkova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Johanna J Kenyon
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia.
| | - Tianyuan Jia
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, China
| | - Anastasiya V Popova
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia; State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, Russia
| | - Mikhail M Shneider
- M. M. Shemyakin & Y. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Anastasiya A Kasimova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia; Higher Chemical College of the Russian Academy of Sciences, D. I. Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - Alexander S Shashkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Bin Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, China
| | - Ruth M Hall
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Yuriy A Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
22
|
The K5 capsular polysaccharide of the bacterium Acinetobacter baumannii SDF with the same K unit containing Leg5Ac7Ac as the K7 capsular polysaccharide but a different linkage between the K units. Russ Chem Bull 2019. [DOI: 10.1007/s11172-019-2432-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
23
|
Functional Analysis and Antivirulence Properties of a New Depolymerase from a Myovirus That Infects Acinetobacter baumannii Capsule K45. J Virol 2019; 93:JVI.01163-18. [PMID: 30463964 DOI: 10.1128/jvi.01163-18] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/08/2018] [Indexed: 12/15/2022] Open
Abstract
Acinetobacter baumannii is an important pathogen causative of health care-associated infections and is able to rapidly develop resistance to all known antibiotics, including colistin. As an alternative therapeutic agent, we have isolated a novel myovirus (vB_AbaM_B9) which specifically infects and makes lysis from without in strains of the K45 and K30 capsule types, respectively. Phage B9 has a genome of 93,641 bp and encodes 167 predicted proteins, of which 29 were identified by mass spectrometry. This phage holds a capsule depolymerase (B9gp69) able to digest extracted exopolysaccharides of both K30 and K45 strains and remains active in a wide range of pH values (5 to 9), ionic strengths (0 to 500 mM), and temperatures (20 to 80°C). B9gp69 was demonstrated to be nontoxic in a cell line model of the human lung and to make the K45 strain fully susceptible to serum killing in vitro Contrary to the case with phage, no resistance development was observed by bacteria targeted with the B9gp69. Therefore, capsular depolymerases may represent attractive antimicrobial agents against A. baumannii infections.IMPORTANCE Currently, phage therapy has revived interest for controlling hard-to-treat bacterial infections. Acinetobacter baumannii is an emerging Gram-negative pathogen able to cause a variety of nosocomial infections. Additionally, this species is becoming more resistant to several classes of antibiotics. Here we describe the isolation of a novel lytic myophage B9 and its recombinant depolymerase. While the phage can be a promising alternative antibacterial agent, its success in the market will ultimately depend on new regulatory frameworks and general public acceptance. We therefore characterized the phage-encoded depolymerase, which is a natural enzyme that can be more easily managed and used. To our knowledge, the therapeutic potential of phage depolymerase against A. baumannii is still unknown. We show for the first time that the K45 capsule type is an important virulence factor of A. baumannii and that capsule removal via the recombinant depolymerase activity helps the host immune system to combat the bacterial infection.
Collapse
|
24
|
Singh JK, Adams FG, Brown MH. Diversity and Function of Capsular Polysaccharide in Acinetobacter baumannii. Front Microbiol 2019; 9:3301. [PMID: 30687280 PMCID: PMC6333632 DOI: 10.3389/fmicb.2018.03301] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/18/2018] [Indexed: 11/30/2022] Open
Abstract
The Gram-negative opportunistic bacterium Acinetobacter baumannii is a significant cause of hospital-borne infections worldwide. Alarmingly, the rapid development of antimicrobial resistance coupled with the remarkable ability of isolates to persist on surfaces for extended periods of time has led to infiltration of A. baumannii into our healthcare environments. A major virulence determinant of A. baumannii is the presence of a capsule that surrounds the bacterial surface. This capsule is comprised of tightly packed repeating polysaccharide units which forms a barrier around the bacterial cell wall, providing protection from environmental pressures including desiccation and disinfection regimes as well as host immune responses such as serum complement. Additionally, capsule has been shown to confer resistance to a range of clinically relevant antimicrobial compounds. Distressingly, treatment options for A. baumannii infections are becoming increasingly limited, and the urgency to develop effective infection control strategies and therapies to combat infections is apparent. An increased understanding of the contribution of capsule to the pathobiology of A. baumannii is required to determine its feasibility as a target for new strategies to combat drug resistant infections. Significant variation in capsular polysaccharide structures between A. baumannii isolates has been identified, with over 100 distinct capsule types, incorporating a vast variety of sugars. This review examines the studies undertaken to elucidate capsule diversity and advance our understanding of the role of capsule in A. baumannii pathogenesis.
Collapse
Affiliation(s)
- Jennifer K Singh
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | - Felise G Adams
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | - Melissa H Brown
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
25
|
Shashkov AS, Kenyon JJ, Arbatsky NP, Shneider MM, Popova AV, Knirel YA, Hall RM. Genetics of biosynthesis and structure of the K53 capsular polysaccharide of Acinetobacter baumannii D23 made up of a disaccharide K unit. Microbiology (Reading) 2018; 164:1289-1292. [DOI: 10.1099/mic.0.000710] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Alexander S. Shashkov
- 1N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Johanna J. Kenyon
- 2School of Molecular Bioscience, The University of Sydney, Sydney, Australia
- 3Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Nikolay P. Arbatsky
- 1N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail M. Shneider
- 4M. M. Shemyakin and Y. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Anastasiya V. Popova
- 5Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
- 6State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, Russia
| | - Yuriy A. Knirel
- 1N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ruth M. Hall
- 2School of Molecular Bioscience, The University of Sydney, Sydney, Australia
- 7School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| |
Collapse
|
26
|
Kasimova AA, Kenyon JJ, Arbatsky NP, Shashkov AS, Popova AV, Knirel YA, Hall RM. Structure of the K82 Capsular Polysaccharide from Acinetobacter baumannii LUH5534 Containing a d-Galactose 4,6-Pyruvic Acid Acetal. BIOCHEMISTRY (MOSCOW) 2018; 83:831-835. [PMID: 30200867 DOI: 10.1134/s0006297918070064] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Type K82 capsular polysaccharide (CPS) was isolated from Acinetobacter baumannii LUH5534. The structure of a linear tetrasaccharide repeating unit of the CPS was established by sugar analysis along with one- and two-dimensional 1H and 13C NMR spectroscopy. Proteins encoded by the KL82 capsule gene cluster in the genome of LUH5534 were assigned to roles in the synthesis of the K82 CPS. In particular, functions were assigned to two new glycosyltransferases (Gtr152 and Gtr153) and a novel pyruvyltransferase, Ptr5, responsible for the synthesis of d-galactose 4,6-(R)-pyruvic acid acetal.
Collapse
Affiliation(s)
- A A Kasimova
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia. .,Higher Chemical College of the Russian Academy of Sciences, D. I. Mendeleev University of Chemical Technology of Russia, Moscow, 125047, Russia
| | - J J Kenyon
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW 2006, Australia. .,Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - N P Arbatsky
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| | - A S Shashkov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| | - A V Popova
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141700, Russia. .,State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, 142279, Russia
| | - Y A Knirel
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - R M Hall
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW 2006, Australia. .,School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
27
|
Kasimova AA, Kenyon JJ, Arbatsky NP, Shashkov AS, Popova AV, Shneider MM, Knirel YA, Hall RM. Acinetobacter baumannii K20 and K21 capsular polysaccharide structures establish roles for UDP-glucose dehydrogenase Ugd2, pyruvyl transferase Ptr2 and two glycosyltransferases. Glycobiology 2018; 28:876-884. [DOI: 10.1093/glycob/cwy074] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/09/2018] [Indexed: 12/31/2022] Open
Affiliation(s)
- Anastasiya A Kasimova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninskii prosp., Moscow, Russia
- Higher Chemical College of the Russian Academy of Sciences, D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya pl., Moscow, Russia
| | - Johanna J Kenyon
- School of Molecular Bioscience, The University of Sydney, Cnr of Maze Cres and Butlin Ave, Darlington Campus, Sydney, Australia
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, Brisbane, Australia
| | - Nikolay P Arbatsky
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninskii prosp., Moscow, Russia
| | - Alexander S Shashkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninskii prosp., Moscow, Russia
| | - Anastasiya V Popova
- Moscow Institute of Physics and Technology, 9 Institutskii per., Dolgoprudny, Moscow Region, Russia
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, Russia
| | - Mikhail M Shneider
- M. M. Shemyakin & Y. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya ul., Moscow, Russia
| | - Yuriy A Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninskii prosp., Moscow, Russia
| | - Ruth M Hall
- School of Molecular Bioscience, The University of Sydney, Cnr of Maze Cres and Butlin Ave, Darlington Campus, Sydney, Australia
- School of Life and Environmental Sciences, The University of Sydney, Cnr of Maze Cres and Butlin Ave, Darlington Campus, Sydney, Australia
| |
Collapse
|
28
|
Naumenko OI, Zheng H, Xiong Y, Senchenkova SN, Wang H, Shashkov AS, Li Q, Wang J, Knirel YA. Studies on the O-polysaccharide of Escherichia albertii O2 characterized by non-stoichiometric O-acetylation and non-stoichiometric side-chain l-fucosylation. Carbohydr Res 2018; 461:80-84. [PMID: 29609101 DOI: 10.1016/j.carres.2018.02.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/14/2018] [Accepted: 02/24/2018] [Indexed: 12/21/2022]
Abstract
An O-polysaccharide was isolated from the lipopolysaccharide of Escherichia albertii O2 and studied by chemical methods and 1D and 2D 1H and 13C NMR spectroscopy. The following structure of the O-polysaccharide was established: . The O-polysaccharide is characterized by masked regularity owing to a non-stoichiometric O-acetylation of an l-fucose residue in the main chain and a non-stoichiometric side-chain l-fucosylation of a β-GlcNAc residue. A regular linear polysaccharide was obtained by sequential Smith degradation and alkaline O-deacetylation of the O-polysaccharide. The content of the O-antigen gene cluster of E. albertii O2 was found to be essentially consistent with the O-polysaccharide structure established.
Collapse
Affiliation(s)
- Olesya I Naumenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia; Higher Chemical College of the Russian Academy of Sciences, D. I. Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - Han Zheng
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Yanwen Xiong
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province, China.
| | - Sof'ya N Senchenkova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Hong Wang
- Zigong Center for Disease Control and Prevention, Zigong, Sichuan Province, China
| | - Alexander S Shashkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Qun Li
- Zigong Center for Disease Control and Prevention, Zigong, Sichuan Province, China
| | - Jianping Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Yuriy A Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|