1
|
Das R, Mukhopadhyay B. The effect of neighbouring group participation and possible long range remote group participation in O-glycosylation. Beilstein J Org Chem 2025; 21:369-406. [PMID: 39996165 PMCID: PMC11849559 DOI: 10.3762/bjoc.21.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 01/27/2025] [Indexed: 02/26/2025] Open
Abstract
Stereoselective glycosylations are one of the most challenging tasks of synthetic glycochemists. The protecting building blocks on the glycosides contribute significantly in attaining the required stereochemistry of the resulting glycosides. Strategic installation of suitable protecting groups in the C-2 position, vicinal to the anomeric carbon, renders neighbouring group participation, whereas protecting groups in the distal C-3, C-4, and C-6 positions are often claimed to exhibit remote group participation with the anomeric carbon. Neighbouring group participation and remote group participation are being widely studied to help the glycochemists design the synthetic protocols for multistep synthesis of complex oligosaccharides and in turn, standardise the process of the glycosylation towards a particular stereochemical output. While neighbouring group participation has been quite effective in achieving the required stereochemistry of the produced glycosides, remote participation exhibits comparatively less efficacy in achieving complete stereoselectivity in the glycosylation reactions. Remote participation is a still highly debated topic in the scientific community. However, implementing the participating role of the remote groups in glycosylation reactions is widely practised to achieve better stereocontrol and to facilitate the formation of synthetically challenging glycosidic linkages.
Collapse
Affiliation(s)
- Rituparna Das
- SWEET Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia 741246, India
| | - Balaram Mukhopadhyay
- SWEET Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia 741246, India
| |
Collapse
|
2
|
Sharma A, Jaiswal MK, Yadav MS, Ansari D, Tripathi RP, Tiwari VK. Recent development on stereoselective intramolecular O-glycosylation methodology. Carbohydr Res 2025; 552:109415. [PMID: 40023931 DOI: 10.1016/j.carres.2025.109415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/20/2025] [Accepted: 02/05/2025] [Indexed: 03/04/2025]
Abstract
Carbohydrates are increasingly recognized for their versatility as scaffolds in biological, pharmaceutical and biotechnological applications, due to their structural diversity, biocompatibility, hydrophilicity, low toxicity, bioavailability, and excellent ADME properties. The important role of carbohydrates in biological systems deepens, the demand for well-defined and anomerically pure carbohydrates in biomedical research has surged. Chemical synthesis remains the most viable method to meet this demand, despite the inherent challenges in glycosylation reactions. Carbohydrate oligomers, in particular, pose significant difficulties due to the need for complex protecting and leaving group modifications, functionalization, labour-intensive purification, and detailed characterization. A precise stereo and regio-control during glycosylation remains one of the major challenges in organic synthesis. To enhance the selectivity in glycosylation products, the concept of 'Intramolecular Glycosylation' was developed, offering a more advanced and efficient alternative route to conventional methods. Various intramolecular glycosylation methods can be classified primarily into three categories: Intramolecular Aglycone Delivery (IAD), Leaving Group-based Intramolecular Glycosylation, and the Molecular Clamp concept. This review article explores the fundamentals of these three methodologies, their significant advancements, and highlights their growing impact on the stereoselective synthesis of numerous bioactive O-glycosides, glycans with diverse functionalities, complex oligosaccharides, and various macrocycles with definite stereoselectivity.
Collapse
Affiliation(s)
- Anindra Sharma
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India; Department of Chemistry, A.P.S.M. College, Barauni, A Constituent Unit of Lalit Narayan Mithila University, Darbhanga, Bihar, India.
| | - Manoj K Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Mangal S Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Danish Ansari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Rama P Tripathi
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
3
|
Liu X, Lin Y, Peng W, Zhang Z, Gao L, Zhou Y, Song Z, Wang Y, Xu P, Yu B, Sun H, Xie W, Li W. Direct Synthesis of 2,6-Dideoxy-β-glycosides and β-Rhamnosides with a Stereodirecting 2-(Diphenylphosphinoyl)acetyl Group. Angew Chem Int Ed Engl 2022; 61:e202206128. [PMID: 35695834 DOI: 10.1002/anie.202206128] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Indexed: 12/11/2022]
Abstract
Anomeric stereocontrol is usually one of the major issues in the synthesis of complex carbohydrates, particularly those involving β-configured 2,6-dideoxyglycoside and d/l-rhamnoside moieties. Herein, we report that 2-(diphenylphosphinoyl)acetyl is highly effective as a remote stereodirecting group in the direct synthesis of these challenging β-glycosides under mild conditions. A deoxy-trisaccharide as a mimic of the sugar chain of landomycin E was prepared stereospecifically in high yield. The synthetic potential was also highlighted in the synthesis of Citrobacter freundii O-antigens composed of a [→4)-α-d-Manp-(1→3)-β-d-Rhap(1→4)-β-d-Rhap-(1→] repeating unit, wherein the convergent assembly up to a nonasaccharide was realized with a strongly β-directing trisaccharide donor. Variable-temperature NMR studies indicate the presence of intermolecular H-bonding between the donor and the bulky acceptor as direct spectral evidence in support of the concept of hydrogen-bond-mediated aglycone delivery.
Collapse
Affiliation(s)
- Xianglai Liu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Yetong Lin
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Wenyi Peng
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Zhaolun Zhang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Longwei Gao
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Yueer Zhou
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Zhe Song
- Instrumental Analysis Center, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu 210009, China
| | - Yingjie Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Peng Xu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Haopeng Sun
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Weijia Xie
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Wei Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| |
Collapse
|
4
|
Liu X, Lin Y, Peng W, Zhang Z, Gao L, Zhou Y, Song Z, Wang Y, Xu P, Yu B, Sun H, Xie W, Li W. Direct Synthesis of 2,6‐Dideoxy‐β‐glycosides and β‐Rhamnosides with a Stereodirecting 2‐(Diphenylphosphinoyl)acetyl Group. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xianglai Liu
- China Pharmaceutical University School of Pharmacy Department of Medicinal Chemistry CHINA
| | - Yetong Lin
- China Pharmaceutical University School of Pharmacy Department of Medicinal Chemistry CHINA
| | - Wenyi Peng
- China Pharmaceutical University School of Pharmacy Department of Medicinal Chemistry CHINA
| | - Zhaolun Zhang
- Shanghai Institute of Organic Chemistry State Key Laboratory of Bioorganic and Natural Products Chemistry CHINA
| | - Longwei Gao
- China Pharmaceutical University School of Pharmacy Department of Medicinal Chemistry CHINA
| | - Yueer Zhou
- China Pharmaceutical University School of Pharmacy Department of Medicinal Chemistry CHINA
| | - Zhe Song
- China Pharmaceutical University Instrumental Analysis Center CHINA
| | - Yingjie Wang
- Shanghai Institute of Organic Chemistry State Key Laboratory of Bioorganic and Natural Products Chemistry CHINA
| | - Peng Xu
- Shanghai Institute of Organic Chemistry State Key Laboratory of Bioorganic and Natural Products Chemistry CHINA
| | - Biao Yu
- Shanghai Institute of Organic Chemistry State Key Laboratory of Bioorganic and Natural Products Chemistry CHINA
| | - Haopeng Sun
- China Pharmaceutical University School of Pharmacy Department of Medicinal Chemistry CHINA
| | - Weijia Xie
- China Pharmaceutical University School of Pharmacy Department of Medicinal Chemistry CHINA
| | - Wei Li
- China Pharmaceutical University School of Pharmacy Department of Medicinal Chemistry 639 Longmian Avenue 211198 Nanjing CHINA
| |
Collapse
|
5
|
Liu X, Lin Y, Liu A, Sun Q, Sun H, Xu P, Li G, Song Y, Xie W, Sun H, Yu B, Li W. 2‐Diphenylphosphinonyl
‐acetyl as a Remote Directing Group for the Highly Stereoselective Synthesis of
β‐Glycosides. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100865] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xianglai Liu
- Department of Medicinal Chemistry School of Pharmacy China Pharmaceutical University, 639 Longmian Avenue Nanjing Jiangsu 211198 China
| | - Yetong Lin
- Department of Medicinal Chemistry School of Pharmacy China Pharmaceutical University, 639 Longmian Avenue Nanjing Jiangsu 211198 China
| | - Ao Liu
- Department of Medicinal Chemistry School of Pharmacy China Pharmaceutical University, 639 Longmian Avenue Nanjing Jiangsu 211198 China
| | - Qianhui Sun
- Department of Medicinal Chemistry School of Pharmacy China Pharmaceutical University, 639 Longmian Avenue Nanjing Jiangsu 211198 China
| | - Huiyong Sun
- Department of Medicinal Chemistry School of Pharmacy China Pharmaceutical University, 639 Longmian Avenue Nanjing Jiangsu 211198 China
| | - Peng Xu
- State Key Laboratory of Bioorganic and Natural Products Chemistry Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road Shanghai 200032 China
| | - Guolong Li
- Department of Medicinal Chemistry School of Pharmacy China Pharmaceutical University, 639 Longmian Avenue Nanjing Jiangsu 211198 China
| | - Yingying Song
- Department of Medicinal Chemistry School of Pharmacy China Pharmaceutical University, 639 Longmian Avenue Nanjing Jiangsu 211198 China
| | - Weijia Xie
- Department of Medicinal Chemistry School of Pharmacy China Pharmaceutical University, 639 Longmian Avenue Nanjing Jiangsu 211198 China
| | - Haopeng Sun
- Department of Medicinal Chemistry School of Pharmacy China Pharmaceutical University, 639 Longmian Avenue Nanjing Jiangsu 211198 China
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road Shanghai 200032 China
| | - Wei Li
- Department of Medicinal Chemistry School of Pharmacy China Pharmaceutical University, 639 Longmian Avenue Nanjing Jiangsu 211198 China
| |
Collapse
|
6
|
Exploiting non-covalent interactions in selective carbohydrate synthesis. Nat Rev Chem 2021; 5:792-815. [PMID: 37117666 DOI: 10.1038/s41570-021-00324-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2021] [Indexed: 02/08/2023]
Abstract
Non-covalent interactions (NCIs) are a vital component of biological bond-forming events, and have found important applications in multiple branches of chemistry. In recent years, the biomimetic exploitation of NCIs in challenging glycosidic bond formation and glycofunctionalizations has attracted significant interest across diverse communities of organic and carbohydrate chemists. This emerging theme is a major new direction in contemporary carbohydrate chemistry, and is rapidly gaining traction as a robust strategy to tackle long-standing issues such as anomeric and site selectivity. This Review thus seeks to provide a bird's-eye view of wide-ranging advances in harnessing NCIs within the broad field of synthetic carbohydrate chemistry. These include the exploitation of NCIs in non-covalent catalysed glycosylations, in non-covalent catalysed glycofunctionalizations, in aglycone delivery, in stabilization of intermediates and transition states, in the existence of intramolecular hydrogen bonding networks and in aggregation by hydrogen bonds. In addition, recent emerging opportunities in exploiting halogen bonding and other unconventional NCIs, such as CH-π, cation-π and cation-n interactions, in various aspects of carbohydrate chemistry are also examined.
Collapse
|
7
|
Cai D, Bian Y, Wu S, Ding K. Conformation-Controlled Hydrogen-Bond-Mediated Aglycone Delivery Method for α-Xylosylation. J Org Chem 2021; 86:9945-9960. [PMID: 34292734 DOI: 10.1021/acs.joc.1c00187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
α-Xylosylated glycans and xylosyl derivatives are biomedically important molecules which show numerous bioactivities against infection, cancer, inflammation, and so on. Lacking an efficient α-xylosylation method, the synthesis of α-xyloside-containing molecules was full of challenges. Herein, a robust method is presented for selective α-xylosylation via combination of a rare conformation-controlled strategy and the hydrogen-bond-mediated aglycone delivery method. Various native branched α-xyloside structures necessitate an orthogonally protected xyloside, and a three-pot preparation method of the xylosyl donor was developed for this novel α-xylosylation method, which was further applied in the first synthesis of the side chain N of xyloglucan. This work provides an efficient α-xylosylation method which would make various α-xyloside structures achievable. The conformation-controlled strategy also has important reference to the chemistry of five-carbon pyranose.
Collapse
Affiliation(s)
- Deqin Cai
- University of Chinese Academy of Sciences, Beijing 100049, China.,Glycochemistry and Glycobiology Lab, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ya Bian
- Glycochemistry and Glycobiology Lab, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,Interdisciplinary Science Research Institute, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shengjie Wu
- University of Chinese Academy of Sciences, Beijing 100049, China.,Glycochemistry and Glycobiology Lab, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kan Ding
- University of Chinese Academy of Sciences, Beijing 100049, China.,Glycochemistry and Glycobiology Lab, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
8
|
Khanam A, Kumar Mandal P. Influence of Remote Picolinyl and Picoloyl Stereodirecting Groups for the Stereoselective Glycosylation. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000558] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ariza Khanam
- Medicinal and Process Chemistry Division CSIR-Central Drug Research Institute Sector 10, Jankipuram extn., Sitapur Road Lucknow 226 031 India
| | - Pintu Kumar Mandal
- Medicinal and Process Chemistry Division CSIR-Central Drug Research Institute Sector 10, Jankipuram extn., Sitapur Road Lucknow 226 031 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
9
|
Abronina PI, Zinin AI, Chizhov AO, Kononov LO. Unusual Outcome of Glycosylation: Hydrogen‐Bond Mediated Control of Stereoselectivity by
N
‐Trifluoroacetyl Group? European J Org Chem 2020. [DOI: 10.1002/ejoc.202000520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Polina I. Abronina
- N.K. Kochetkov Laboratory of Carbohydrate Chemistry N.D. Zelinsky Institute of Organic Chemistry Leninsky prosp. 47 119991 Moscow Russian Federation
| | - Alexander I. Zinin
- N.K. Kochetkov Laboratory of Carbohydrate Chemistry N.D. Zelinsky Institute of Organic Chemistry Leninsky prosp. 47 119991 Moscow Russian Federation
| | - Alexander O. Chizhov
- N.K. Kochetkov Laboratory of Carbohydrate Chemistry N.D. Zelinsky Institute of Organic Chemistry Leninsky prosp. 47 119991 Moscow Russian Federation
| | - Leonid O. Kononov
- N.K. Kochetkov Laboratory of Carbohydrate Chemistry N.D. Zelinsky Institute of Organic Chemistry Leninsky prosp. 47 119991 Moscow Russian Federation
| |
Collapse
|
10
|
Geringer SA, Mannino MP, Bandara MD, Demchenko AV. Picoloyl protecting group in synthesis: focus on a highly chemoselective catalytic removal. Org Biomol Chem 2020; 18:4863-4871. [PMID: 32608450 DOI: 10.1039/d0ob00803f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The picoloyl ester (Pico) has proven to be a versatile protecting group in carbohydrate chemistry. It can be used for the purpose of stereocontrolling glycosylations via an H-bond-mediated Aglycone Delivery (HAD) method. It can also be used as a temporary protecting group that can be efficiently introduced and chemoselectively cleaved in the presence of practically all other common protecting groups used in synthesis. Herein, we will describe a new method for rapid, catalytic, and highly chemoselective removal of the picoloyl group using inexpensive copper(ii) or iron(iii) salts.
Collapse
Affiliation(s)
- Scott A Geringer
- Department of Chemistry and Biochemistry, University of Missouri - St Louis, One University Boulevard, St Louis, MO 63121, USA.
| | - Michael P Mannino
- Department of Chemistry and Biochemistry, University of Missouri - St Louis, One University Boulevard, St Louis, MO 63121, USA.
| | - Mithila D Bandara
- Department of Chemistry and Biochemistry, University of Missouri - St Louis, One University Boulevard, St Louis, MO 63121, USA.
| | - Alexei V Demchenko
- Department of Chemistry and Biochemistry, University of Missouri - St Louis, One University Boulevard, St Louis, MO 63121, USA.
| |
Collapse
|
11
|
Mannino MP, Demchenko AV. Synthesis of β-Glucosides with 3-O-Picoloyl-Protected Glycosyl Donors in the Presence of Excess Triflic Acid: Defining the Scope. Chemistry 2020; 26:2938-2946. [PMID: 31886911 DOI: 10.1002/chem.201905278] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Indexed: 11/08/2022]
Abstract
Excellent β-stereoselectivity for the glycosylation with glucosyl donors equipped with the 3-O-picoloyl (Pico) group, without the use of participating group, was achieved in the presence of NIS/excess TfOH promoter system. A complete investigation of the scope of this reaction was performed, revealing all important attributes of successful glycosylation. While altering the halogen source was tolerated, substitution of the triflate anion resulted in complete loss of stereoselectivity. Protonation of the Pico group was determined to be crucial in this reaction. The stability or extent of the protonated pyridine ring was also found to be another important key factor in obtaining high stereoselectivity. The nucleophilicity of the acceptor was found to be proportional to the stereoselectivity obtained, suggesting an SN 2-like mechanism.
Collapse
Affiliation(s)
- Michael P Mannino
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri, 63121, USA
| | - Alexei V Demchenko
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri, 63121, USA
| |
Collapse
|
12
|
Mannino MP, Demchenko AV. Synthesis of β-Glucosides with 3-O-Picoloyl-Protected Glycosyl Donors in the Presence of Excess Triflic Acid: A Mechanistic Study. Chemistry 2020; 26:2927-2937. [PMID: 31886924 DOI: 10.1002/chem.201905277] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Indexed: 12/26/2022]
Abstract
Our previous study showed that picoloylated donors are capable of providing excellent facial stereoselectivity through the H-bond-mediated aglycone delivery (HAD) pathway. Presented herein is a detailed mechanistic study of stereoselective glycosylation with 3-O-picoloylated glucosyl donors. While reactions of glycosyl donors equipped with the 3-O-benzoyl group are typically non-stereoselective because these reactions proceed via the oxacarbenium intermediate, 3-O-picoloylated donors are capable of providing enhanced, but somewhat relaxed, β-stereoselectivity by the HAD pathway. In an attempt to refine this reaction, we noticed that glycosylations are highly β-stereoselective in the presence of NIS and stoichiometric TfOH. The HAD pathway is highly unlikely because the picoloyl nitrogen is protonated under these reaction conditions. The protonation and glycosylation were studied by low-temperature NMR, and the intermediacy of the glycosyl triflate has been observed. This article is dedicated to broadening the scope of this reaction in application to a variety of substrates and targets.
Collapse
Affiliation(s)
- Michael P Mannino
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri, 63121, USA
| | - Alexei V Demchenko
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri, 63121, USA
| |
Collapse
|
13
|
Jones B, Behm A, Shadrick M, Geringer SA, Escopy S, Lohman M, De Meo C. Comparative Study on the Effects of Picoloyl Groups in Sialylations Based on Their Substitution Pattern. J Org Chem 2019; 84:15052-15062. [DOI: 10.1021/acs.joc.9b01492] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Bradley Jones
- Department of Chemistry, Southern Illinois University Edwardsville, 1 Hairpin Dr., Edwardsville, Illinois 62025, United States
| | - Alexanndra Behm
- Department of Chemistry, Southern Illinois University Edwardsville, 1 Hairpin Dr., Edwardsville, Illinois 62025, United States
| | - Melanie Shadrick
- Department of Chemistry, Southern Illinois University Edwardsville, 1 Hairpin Dr., Edwardsville, Illinois 62025, United States
| | - Scott A. Geringer
- Department of Chemistry, Southern Illinois University Edwardsville, 1 Hairpin Dr., Edwardsville, Illinois 62025, United States
| | - Samira Escopy
- Department of Chemistry, Southern Illinois University Edwardsville, 1 Hairpin Dr., Edwardsville, Illinois 62025, United States
| | - Matthew Lohman
- Department of Chemistry, Southern Illinois University Edwardsville, 1 Hairpin Dr., Edwardsville, Illinois 62025, United States
| | - Cristina De Meo
- Department of Chemistry, Southern Illinois University Edwardsville, 1 Hairpin Dr., Edwardsville, Illinois 62025, United States
| |
Collapse
|