1
|
Porciúncula-González C, Cagnoni AJ, Fontana C, Mariño KV, Saenz-Méndez P, Giacomini C, Irazoqui G. Structural insights in galectin-1-glycan recognition: Relevance of the glycosidic linkage and the N-acetylation pattern of sugar moieties. Bioorg Med Chem 2021; 44:116309. [PMID: 34293617 DOI: 10.1016/j.bmc.2021.116309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
Galectins, soluble lectins widely expressed intra- and extracellularly in different cell types, play major roles in deciphering the cellular glycocode. Galectin-1 (Gal-1), a prototype member of this family, presents a carbohydrate recognition domain (CRD) with specific affinity for β-galactosides such as N-acetyllactosamine (β-d-Galp-(1 → 4)-d-GlcpNAc), and mediate numerous physiological and pathological processes. In this work, Gal-1 binding affinity for β-(1 → 6) galactosides, including β-d-Galp-(1 → 6)-β-d-GlcpNAc-(1 → 4)-d-GlcpNAc was evaluated, and their performance was compared to that of β-(1 → 4) and β-(1 → 3) galactosides. To this end, the trisaccharide β-d-Galp-(1 → 6)-β-d-GlcpNAc-(1 → 4)-d-GlcpNAc was enzymatically synthesized, purified and structurally characterized. To evaluate the affinity of Gal-1 for the galactosides, competitive solid phase assays (SPA) and isothermal titration calorimetry (ITC) studies were carried out. The experimental dissociation constants and binding energies obtained were compared to those calculated by molecular docking. These analyses evidenced the critical role of the glycosidic linkage between the terminal galactopyranoside residue and the adjacent monosaccharide, as galactosides bearing β-(1 → 6) glycosidic linkages showed dissociation constants six- and seven-fold higher than those involving β-(1 → 4) and β-(1 → 3) linkages, respectively. Moreover, docking experiments revealed the presence of hydrogen bond interactions between the N-acetyl group of the glucosaminopyranose moiety of the evaluated galactosides and specific amino acid residues of Gal-1, relevant for galectin-glycan affinity. Noticeably, the binding free energies (ΔGbindcalc) derived from the molecular docking were in good agreement with experimental values determined by ITC measurements (ΔGbindexp), evidencing a good correlation between theoretical and experimental approaches, which validates the in silico simulations and constitutes an important tool for the rational design of future optimized ligands.
Collapse
Affiliation(s)
- Cecilia Porciúncula-González
- Laboratorio de Bioquímica, Departamento de Biociencias, Facultad de Química, UdelaR, Gral. Flores, 2124, 11800 Montevideo, Uruguay; Computational Chemistry and Biology Group, DETEMA, Facultad de Química, UdelaR, Isidoro de María 1614, 11800 Montevideo, Uruguay; Graduate Program in Chemistry, Facultad de Química, Universidad de la República, Uruguay
| | - Alejandro J Cagnoni
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428ADN Buenos Aires, Argentina
| | - Carolina Fontana
- Laboratorio de Espectroscopía y Fisicoquímica Orgánica, Departamento de Química del Litoral, CENUR Litoral Norte (S.R.A. Facultad de Química), UdelaR, Ruta 3 km 363, 60000 Paysandú, Uruguay
| | - Karina V Mariño
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428ADN Buenos Aires, Argentina
| | - Patricia Saenz-Méndez
- Computational Chemistry and Biology Group, DETEMA, Facultad de Química, UdelaR, Isidoro de María 1614, 11800 Montevideo, Uruguay; Department of Engineering and Chemical Sciences, Faculty of Health, Science and Technology, Karlstad University, Universitetsgatan 2, 651 88 Karlstad, Sweden
| | - Cecilia Giacomini
- Laboratorio de Bioquímica, Departamento de Biociencias, Facultad de Química, UdelaR, Gral. Flores, 2124, 11800 Montevideo, Uruguay
| | - Gabriela Irazoqui
- Laboratorio de Bioquímica, Departamento de Biociencias, Facultad de Química, UdelaR, Gral. Flores, 2124, 11800 Montevideo, Uruguay.
| |
Collapse
|
2
|
Yang X, Lin P, Wang J, Liu N, Yin F, Shen N, Guo S. Purification, characterization and anti-atherosclerotic effects of the polysaccharides from the fruiting body of Cordyceps militaris. Int J Biol Macromol 2021; 181:890-904. [PMID: 33878353 DOI: 10.1016/j.ijbiomac.2021.04.083] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/01/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022]
Abstract
Hyperlipidemia is one major cause of atherosclerosis, which is a basic pathological change of cardiovascular diseases. Polysaccharide is a water-soluble component with lipid-lowering effects. In this study, alkaline-extracted polysaccharides were obtained from the fruiting body of C. militaris. Polysaccharides were purified via anion exchange and size exclusion chromatography. Their structural characteristics were investigated via chemical and spectroscopic methods. CM3I was mainly composed of →4)α-D-Glcp(1 → glycosyls and differed from starch due to the presence of →4,6)β-D-Glcp(1 → glycosyls. CM3II was characterized by its backbone, which was composed of →4)-β-D-Manp(1 → 6)-α-D-Manp(1 → 6)-β-D-Manp(1 → linked glycosyls, and especially the presence of O-methyl. Moreover, CM3II exhibited powerful anti-atherosclerotic effects via lowering plasma lipid levels in apolipoprotein E-deficient mice. The underlying mechanisms were attributed to its promoting effect on LXRα and inhibitory effect on SREBP-2. Collectively, CM3I and CM3II are different from the previously reported polysaccharides from C. militaris, and CM3II has a potential application in hypolipidemia and anti-atherosclerosis.
Collapse
Affiliation(s)
- Xiaoqian Yang
- Institute of Lipid metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Ping Lin
- Institute of Lipid metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Jin Wang
- Institute of Lipid metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Na Liu
- Institute of Lipid metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Fan Yin
- Institute of Lipid metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Nuo Shen
- Institute of Lipid metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Shoudong Guo
- Institute of Lipid metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China.
| |
Collapse
|
3
|
Ji C, Zhang Z, Zhang B, Chen J, Liu R, Song D, Li W, Lin N, Zou X, Wang J, Guo S. Purification, characterization, and in vitro antitumor activity of a novel glucan from the purple sweet potato Ipomoea Batatas (L.) Lam. Carbohydr Polym 2021; 257:117605. [DOI: 10.1016/j.carbpol.2020.117605] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/17/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022]
|