1
|
Li J, Fu Z, Qiao Z, Xie D, Zhang L, Liu YZ, Yang J, Yan JX, Ma X. Controllable 1,3-Bis-Functionalization of 2-Nitroglycals with High Regioselectivity and Stereoselectivity Enabled by a H-Bond Catalyst. JACS AU 2024; 4:974-984. [PMID: 38559736 PMCID: PMC10976612 DOI: 10.1021/jacsau.3c00727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024]
Abstract
The selective modification of carbohydrates is significant for producing their unnatural analogues for drug discovery. C1-functionalization (glycosylation) and C1,C2-difunctionalization of carbohydrates have been well developed. In contrast, C3-functionalization or C1,C3-difunctionalization of carbohydrates remains rare. Herein, we report such processes that efficiently and stereoselectively modify carbohydrates. Specifically, we found that trifluoroethanol (TFE) could promote 1,3-bis-indolylation/pyrrolylation of 2-nitroglycals generated carbohydrate derivatives in up to 93% yield at room temperature; slightly reducing the temperature could install two different indoles at the C1- and C3-positions. Switching TFE to a bifunctional amino thiourea catalyst leads to the generation of C3 monosubstituted carbohydrates, which could also be used to construct 1,3-di-C-functionalized carbohydrates. This approach produced a range of challenging sugar derivatives (over 80 examples) with controllable and high stereoselectivity (single isomer for over 90% of the examples). The potential applications of the reaction were demonstrated by a set of transformations including the synthesis of bridged large-ring molecules and gram scale reactions. Biological activities evaluation demonstrated that three compounds exhibit a potent inhibitory effect on human cancer cells T24, HCT116, AGS, and MKN-45 with IC50 ranged from 0.695 to 3.548 μM.
Collapse
Affiliation(s)
- Jiangtao Li
- Natural
Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People’s Republic of China
- University
of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Zhengyan Fu
- Natural
Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People’s Republic of China
- Department
of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy,
West China Hospital, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Zeen Qiao
- Natural
Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People’s Republic of China
- University
of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Demeng Xie
- Natural
Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People’s Republic of China
| | - Li Zhang
- Natural
Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People’s Republic of China
- University
of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Ya-Zhou Liu
- Natural
Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People’s Republic of China
| | - Jian Yang
- Natural
Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People’s Republic of China
- University
of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Jia-Xin Yan
- Natural
Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People’s Republic of China
- University
of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Xiaofeng Ma
- Natural
Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People’s Republic of China
| |
Collapse
|
2
|
Wu X, Zheng Z, Wang L, Xue Y, Liao J, Liu H, Liu D, Sun JS, Zhang Q. Stereoselective Synthesis of 2,3‐diamino‐2,3‐dideoxyglycosides from 3‐O‐acetyl‐2‐nitroglycals. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiaopei Wu
- Jiangxi Normal University Jiangxi Normal University CHINA
| | - Zhichao Zheng
- Jiangxi Normal University Jiangxi Normal University CHINA
| | - Liming Wang
- Jiangxi Normal University Jiangxi Normal University CHINA
| | - Yunxia Xue
- Jiangxi Normal University Jiangxi Normal University CHINA
| | - Jinxi Liao
- Jiangxi Normal University Jiangxi Normal University CHINA
| | - Hui Liu
- Jiangxi Normal University Jiangxi Normal University CHINA
| | - Deyong Liu
- Jiangxi Normal University Jiangxi Normal University CHINA
| | - Jian-Song Sun
- Jiangxi Normal University Jiangxi Normal University CHINA
| | - Qingju Zhang
- Jiangxi Normal University National Research Centre for Carbohydrate Synthesis 99 Ziyang Avenue 330022 Nanchang CHINA
| |
Collapse
|
3
|
Montenegro-Sustaita MM, Jiménez-Vázquez HA, Vargas-Díaz E, Herbert-Pucheta JE, Zepeda-Vallejo LG. Structural Analysis of the Michael-Michael Ring Closure (MIMIRC) Reaction Products. Molecules 2022; 27:2810. [PMID: 35566162 PMCID: PMC9104055 DOI: 10.3390/molecules27092810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 11/29/2022] Open
Abstract
A representative number of decalin and hydrindane derivatives 2a-l were prepared in 11-91% yield by means of a cascade reaction of cyclohexanone/cyclopentanone enolates and methyl acrylate through a Michael-Michael ring closure (MIMIRC) process. The relative stereochemistry of the four stereogenic centers formed in all products was determined by analyzing the vicinal coupling constants from the 1H NMR and X-ray crystallography. Such a stereochemical outcome was corroborated by conformational analysis supported by DFT calculations and simulating the 1H NMR spectra of representative products. All products showed the same relative stereochemistry at C-1 and C-8a, while at C-3 and bridgehead carbon C-4a, configurational changes were observed. The present results provide some insights about the scope and limitations of the triple cascade reaction between cycloalkanone enolates with methyl acrylate. This synthetic protocol is still a simple and very practical alternative to generate decalin and hydrindane derivatives with great structural diversity.
Collapse
Affiliation(s)
| | | | | | | | - L. Gerardo Zepeda-Vallejo
- Departamento de Química Orgánica, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomas., Alc. Miguel Hidalgo, Ciudad de México 11340, Mexico; (M.M.M.-S.); (H.A.J.-V.); (E.V.-D.); (J.E.H.-P.)
| |
Collapse
|