1
|
Córdova-Pérez GE, Cortez-Elizalde J, Silahua-Pavón AA, Cervantes-Uribe A, Arévalo-Pérez JC, Cordero-Garcia A, de los Monteros AEE, Espinosa-González CG, Godavarthi S, Ortiz-Chi F, Guerra-Que Z, Torres-Torres JG. γ-Valerolactone Production from Levulinic Acid Hydrogenation Using Ni Supported Nanoparticles: Influence of Tungsten Loading and pH of Synthesis. NANOMATERIALS 2022; 12:nano12122017. [PMID: 35745357 PMCID: PMC9228888 DOI: 10.3390/nano12122017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 12/04/2022]
Abstract
γ-Valerolactone (GVL) has been considered an alternative as biofuel in the production of carbon-based chemicals; however, the use of noble metals and corrosive solvents has been a problem. In this work, Ni supported nanocatalysts were prepared to produce γ-Valerolactone from levulinic acid using methanol as solvent at a temperature of 170 °C utilizing 4 MPa of H2. Supports were modified at pH 3 using acetic acid (CH3COOH) and pH 9 using ammonium hydroxide (NH4OH) with different tungsten (W) loadings (1%, 3%, and 5%) by the Sol-gel method. Ni was deposited by the suspension impregnation method. The catalysts were characterized by various techniques including XRD, N2 physisorption, UV-Vis, SEM, TEM, XPS, H2-TPR, and Pyridine FTIR. Based on the study of acidity and activity relation, Ni dispersion due to the Lewis acid sites contributed by W at pH 9, producing nanoparticles smaller than 10 nm of Ni, and could be responsible for the high esterification activity of levulinic acid (LA) to Methyl levulinate being more selective to catalytic hydrogenation. Products and by-products were analyzed by 1H NMR. Optimum catalytic activity was obtained with 5% W at pH 9, with 80% yield after 24 h of reaction. The higher catalytic activity was attributed to the particle size and the amount of Lewis acid sites generated by modifying the pH of synthesis and the amount of W in the support due to the spillover effect.
Collapse
Affiliation(s)
- Gerardo E. Córdova-Pérez
- Laboratorio de Nanomateriales Catalíticos Aplicados al Desarrollo de Fuentes de Energía y Remediación Ambiental, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), DACB, Universidad Juárez Autónoma de Tabasco, Km.1 Carretera Cunduacán-Jalpa de Méndez, Cunduacan CP 86690, Tabasco, Mexico; (G.E.C.-P.); (J.C.-E.); (A.A.S.-P.); (A.C.-U.); (J.C.A.-P.); (A.C.-G.); (A.E.E.d.l.M.)
| | - Jorge Cortez-Elizalde
- Laboratorio de Nanomateriales Catalíticos Aplicados al Desarrollo de Fuentes de Energía y Remediación Ambiental, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), DACB, Universidad Juárez Autónoma de Tabasco, Km.1 Carretera Cunduacán-Jalpa de Méndez, Cunduacan CP 86690, Tabasco, Mexico; (G.E.C.-P.); (J.C.-E.); (A.A.S.-P.); (A.C.-U.); (J.C.A.-P.); (A.C.-G.); (A.E.E.d.l.M.)
| | - Adib Abiu Silahua-Pavón
- Laboratorio de Nanomateriales Catalíticos Aplicados al Desarrollo de Fuentes de Energía y Remediación Ambiental, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), DACB, Universidad Juárez Autónoma de Tabasco, Km.1 Carretera Cunduacán-Jalpa de Méndez, Cunduacan CP 86690, Tabasco, Mexico; (G.E.C.-P.); (J.C.-E.); (A.A.S.-P.); (A.C.-U.); (J.C.A.-P.); (A.C.-G.); (A.E.E.d.l.M.)
| | - Adrián Cervantes-Uribe
- Laboratorio de Nanomateriales Catalíticos Aplicados al Desarrollo de Fuentes de Energía y Remediación Ambiental, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), DACB, Universidad Juárez Autónoma de Tabasco, Km.1 Carretera Cunduacán-Jalpa de Méndez, Cunduacan CP 86690, Tabasco, Mexico; (G.E.C.-P.); (J.C.-E.); (A.A.S.-P.); (A.C.-U.); (J.C.A.-P.); (A.C.-G.); (A.E.E.d.l.M.)
| | - Juan Carlos Arévalo-Pérez
- Laboratorio de Nanomateriales Catalíticos Aplicados al Desarrollo de Fuentes de Energía y Remediación Ambiental, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), DACB, Universidad Juárez Autónoma de Tabasco, Km.1 Carretera Cunduacán-Jalpa de Méndez, Cunduacan CP 86690, Tabasco, Mexico; (G.E.C.-P.); (J.C.-E.); (A.A.S.-P.); (A.C.-U.); (J.C.A.-P.); (A.C.-G.); (A.E.E.d.l.M.)
| | - Adrián Cordero-Garcia
- Laboratorio de Nanomateriales Catalíticos Aplicados al Desarrollo de Fuentes de Energía y Remediación Ambiental, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), DACB, Universidad Juárez Autónoma de Tabasco, Km.1 Carretera Cunduacán-Jalpa de Méndez, Cunduacan CP 86690, Tabasco, Mexico; (G.E.C.-P.); (J.C.-E.); (A.A.S.-P.); (A.C.-U.); (J.C.A.-P.); (A.C.-G.); (A.E.E.d.l.M.)
| | - Alejandra E. Espinosa de los Monteros
- Laboratorio de Nanomateriales Catalíticos Aplicados al Desarrollo de Fuentes de Energía y Remediación Ambiental, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), DACB, Universidad Juárez Autónoma de Tabasco, Km.1 Carretera Cunduacán-Jalpa de Méndez, Cunduacan CP 86690, Tabasco, Mexico; (G.E.C.-P.); (J.C.-E.); (A.A.S.-P.); (A.C.-U.); (J.C.A.-P.); (A.C.-G.); (A.E.E.d.l.M.)
| | - Claudia G. Espinosa-González
- Investigadoras e Investigadores por Mexico, Universidad Juárez Autónoma de Tabasco, División Académica de Ciencias Básicas, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), Km.1 Carretera Cunduacán-Jalpa de Méndez, Cunduacan CP 86690, Tabasco, Mexico; (C.G.E.-G.); (S.G.); (F.O.-C.)
| | - Srinivas Godavarthi
- Investigadoras e Investigadores por Mexico, Universidad Juárez Autónoma de Tabasco, División Académica de Ciencias Básicas, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), Km.1 Carretera Cunduacán-Jalpa de Méndez, Cunduacan CP 86690, Tabasco, Mexico; (C.G.E.-G.); (S.G.); (F.O.-C.)
| | - Filiberto Ortiz-Chi
- Investigadoras e Investigadores por Mexico, Universidad Juárez Autónoma de Tabasco, División Académica de Ciencias Básicas, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), Km.1 Carretera Cunduacán-Jalpa de Méndez, Cunduacan CP 86690, Tabasco, Mexico; (C.G.E.-G.); (S.G.); (F.O.-C.)
| | - Zenaida Guerra-Que
- Tecnológico Nacional de México Campus Villahermosa, Laboratorio de Investigción 1 Área de Nanotecnología, Km. 3.5 Carretera Villahermosa–Frontera, Cd. Industrial, Villahermosa CP 86010, Tabasco, Mexico;
| | - José Gilberto Torres-Torres
- Laboratorio de Nanomateriales Catalíticos Aplicados al Desarrollo de Fuentes de Energía y Remediación Ambiental, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), DACB, Universidad Juárez Autónoma de Tabasco, Km.1 Carretera Cunduacán-Jalpa de Méndez, Cunduacan CP 86690, Tabasco, Mexico; (G.E.C.-P.); (J.C.-E.); (A.A.S.-P.); (A.C.-U.); (J.C.A.-P.); (A.C.-G.); (A.E.E.d.l.M.)
- Correspondence: ; Tel.: +52-191-4336-0300; Fax: +52-191-4336-0928
| |
Collapse
|
2
|
Zhang X, Vajglova Z, Mäki‐Arvela P, Peurla M, Palonen H, Murzin DY, Tungatarova SA, Baizhumanova TS, Aubakirov YA. Mono‐ and Bimetallic Ni−Co Catalysts in Dry Reforming of Methane. ChemistrySelect 2021. [DOI: 10.1002/slct.202100686] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Xuliang Zhang
- Al-Farabi Kazakh National University 71 al-Farabi ave. Almaty 050040 Kazakhstan
| | - Zuzana Vajglova
- Johan Gadolin Process Chemistry Centre Åbo Akademi University Turku/Åbo 20500 Finland
| | - Päivi Mäki‐Arvela
- Johan Gadolin Process Chemistry Centre Åbo Akademi University Turku/Åbo 20500 Finland
| | - Markus Peurla
- Laboratory of Electron Microscopy University of Turku Turku 20014 Finland
| | - Heikki Palonen
- Wihuri Physical Laboratory Department of Physics and Astronomy University of Turku 20500 Turku Finland
| | - Dmitry Yu. Murzin
- Johan Gadolin Process Chemistry Centre Åbo Akademi University Turku/Åbo 20500 Finland
| | - Svetlana A. Tungatarova
- Al-Farabi Kazakh National University 71 al-Farabi ave. Almaty 050040 Kazakhstan
- D.V. Sokolsky Institute of Fuel Catalysis and Electrochemistry 142 Kunaev str. Almaty 050010 Kazakhstan
| | - Tolkyn S. Baizhumanova
- Al-Farabi Kazakh National University 71 al-Farabi ave. Almaty 050040 Kazakhstan
- D.V. Sokolsky Institute of Fuel Catalysis and Electrochemistry 142 Kunaev str. Almaty 050010 Kazakhstan
| | - Yermek A. Aubakirov
- Al-Farabi Kazakh National University 71 al-Farabi ave. Almaty 050040 Kazakhstan
| |
Collapse
|
3
|
Ryaboshapka DA, Lokteva ES, Golubina EV, Kharlanov AN, Maslakov KI, Kamaev AO, Shumyantsev AV, Lipatova IA, Shkol’nikov EI. Gas-Phase Hydrodechlorination of Chlorobenzene over Alumina-Supported Nickel Catalysts: Effect of Support Structure and Modification with Heteropoly Acid HSiW. KINETICS AND CATALYSIS 2021. [DOI: 10.1134/s0023158420060130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Zhitnev YN, Lunin BS, Tveritinova EA, Lunin VV. Synthesis of supported nickel catalysts in dynamic vacuum using nickel formate as precursor. MENDELEEV COMMUNICATIONS 2018. [DOI: 10.1016/j.mencom.2018.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Formation of Phases and Porous System in the Product of Hydrothermal Treatment of χ-Al2O3. COATINGS 2018. [DOI: 10.3390/coatings8010030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
|
7
|
Danaci S, Protasova L, Lefevere J, Bedel L, Guilet R, Marty P. Efficient CO 2 methanation over Ni/Al 2 O 3 coated structured catalysts. Catal Today 2016. [DOI: 10.1016/j.cattod.2016.04.019] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Fischer-Tropsch synthesis: Effect of solvent on the H 2 –D 2 isotopic exchange rate over an activated nickel catalyst. Catal Today 2016. [DOI: 10.1016/j.cattod.2016.03.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Anjaneyulu C, Naresh G, Kumar VV, Padmasri AH, Tardio J, Bhargava SK, Venugopal A. Ni/H-ZSM-5 as a stable and promising catalyst for COx free H2 production by CH4 decomposition. RSC Adv 2016. [DOI: 10.1039/c6ra03857c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A relationship between Ni loading on H-ZSM-5 with (Si/Al = 150 mole ratio) against methane decomposition activity and Ni metal surface area is established.
Collapse
Affiliation(s)
- Chatla Anjaneyulu
- Catalysis Laboratory
- Inorganic & Physical Chemistry Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad
- India
| | - Gutta Naresh
- Catalysis Laboratory
- Inorganic & Physical Chemistry Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad
- India
| | - Velisoju Vijay Kumar
- Catalysis Laboratory
- Inorganic & Physical Chemistry Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad
- India
| | - Aytam Hari Padmasri
- Department of Chemistry
- University College for Women Osmania University
- Hyderabad – 500 095
- India
| | - James Tardio
- Centre for Advanced Materials & Industrial Chemistry (CAMIC)
- School of Applied Sciences
- RMIT University
- Melbourne 3001
- Australia
| | - Suresh Kumar Bhargava
- Centre for Advanced Materials & Industrial Chemistry (CAMIC)
- School of Applied Sciences
- RMIT University
- Melbourne 3001
- Australia
| | - Akula Venugopal
- Catalysis Laboratory
- Inorganic & Physical Chemistry Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad
- India
| |
Collapse
|
10
|
Duarte DP, Martínez R, Hoyos LJ. Hydrodeoxygenation of 5-Hydroxymethylfurfural over Alumina-Supported Catalysts in Aqueous Medium. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b02851] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Diana P. Duarte
- Universidad Industrial de Santander, Cra. 27 Calle 9, Bucaramanga 680001, Colombia
| | - Ramiro Martínez
- Universidad Industrial de Santander, Cra. 27 Calle 9, Bucaramanga 680001, Colombia
| | - Luis J. Hoyos
- Instituto Colombiano del Petróleo − ICP, Ecopetrol S.A., km 7 vía a Piedecuesta, Piedecuesta 681011, Colombia
| |
Collapse
|
11
|
Ren R, Ma J. Lamellar Ni/Al-SBA-15 fibers: preparation, characterization, and applications as highly efficient catalysts for amine and imine syntheses. RSC Adv 2015. [DOI: 10.1039/c5ra14382a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel lamellar Ni/Al-SBA-15 fiber catalyst was prepared and successfully utilized in one-pot syntheses of amines and imines.
Collapse
Affiliation(s)
- Ren Ren
- State Key Laboratory of Applied Organic Chemistry
- Gansu Provincial Engineering Laboratory for Chemical Catalysis
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
| | - Jiantai Ma
- State Key Laboratory of Applied Organic Chemistry
- Gansu Provincial Engineering Laboratory for Chemical Catalysis
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
| |
Collapse
|
12
|
Cui D, Liu J, Yu J, Su F, Xu G. Attrition-resistant Ni–Mg/Al2O3 catalyst for fluidized bed syngas methanation. Catal Sci Technol 2015. [DOI: 10.1039/c5cy00066a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Investigating the granular Ni–Mg/Al2O3 prepared by different binders has demonstrated that the used binder is critical to the attrition strength and catalytic activity for syngas methanation of the resulting catalysts.
Collapse
Affiliation(s)
- Dianmiao Cui
- State Key Laboratory of Multi-phase Complex Systems
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Jiao Liu
- State Key Laboratory of Multi-phase Complex Systems
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Jian Yu
- State Key Laboratory of Multi-phase Complex Systems
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Fabing Su
- State Key Laboratory of Multi-phase Complex Systems
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Guangwen Xu
- State Key Laboratory of Multi-phase Complex Systems
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- China
| |
Collapse
|
13
|
|
14
|
Du J, Sabatini DA, Butler EC. Synthesis, characterization, and evaluation of simple aluminum-based adsorbents for fluoride removal from drinking water. CHEMOSPHERE 2014; 101:21-7. [PMID: 24373227 DOI: 10.1016/j.chemosphere.2013.12.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 12/02/2013] [Accepted: 12/10/2013] [Indexed: 05/21/2023]
Abstract
Simple aluminum (hydr)oxides and layered double hydroxides were synthesized using common chemicals and equipment by varying synthesis temperature, concentrations of extra sulfate and citrate, and metal oxide amendments. Aluminum (hydr)oxide samples were aged at either 25 or 200°C during synthesis and, in some cases, calcined at 600 °C. Despite yielding increased crystallinity and mineral phase changes, higher temperatures had a generally negative effect on fluoride adsorption. Addition of extra sulfate during synthesis of aluminum (hydr)oxides led to significantly higher fluoride adsorption capacity compared to aluminum (hydr)oxides prepared with extra citrate or no extra ligands. X-ray diffraction results suggest that extra sulfate led to the formation of both pseudoboehmite (γ-AlOOH) and basaluminite (Al4SO4(OH)10⋅4H2O) at 200 °C; energy dispersive X-ray spectroscopy confirmed the presence of sulfur in this solid. Treatment of aluminum (hydr)oxides with magnesium, manganese, and iron oxides did not significantly impact fluoride adsorption. While layered double hydroxides exhibited high maximum fluoride adsorption capacities, their adsorption capacities at dissolved fluoride concentrations close to the World Health Organization drinking water guideline of 1.5 mg L(-1) were much lower than those for the aluminum (hydr)oxides.
Collapse
Affiliation(s)
- Junyi Du
- School of Civil Engineering and Environmental Science, University of Oklahoma, Norman, OK 73019, United States
| | - David A Sabatini
- School of Civil Engineering and Environmental Science, University of Oklahoma, Norman, OK 73019, United States
| | - Elizabeth C Butler
- School of Civil Engineering and Environmental Science, University of Oklahoma, Norman, OK 73019, United States.
| |
Collapse
|
15
|
Quddus MR, Hossain MM, de Lasa HI. Ni based oxygen carrier over γ-Al2O3 for chemical looping combustion: Effect of preparation method on metal support interaction. Catal Today 2013. [DOI: 10.1016/j.cattod.2013.02.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Hydrogen Production by Steam Reforming of Ethanol over Nickel Catalysts Supported on Sol Gel Made Alumina: Influence of Calcination Temperature on Supports. MATERIALS 2013; 6:2229-2239. [PMID: 28809270 PMCID: PMC5458952 DOI: 10.3390/ma6062229] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/07/2013] [Accepted: 04/28/2013] [Indexed: 11/17/2022]
Abstract
Selecting a proper support in the catalyst system plays an important role in hydrogen production via ethanol steam reforming. In this study, sol gel made alumina supports prepared for nickel (Ni) catalysts were calcined at different temperatures. A series of (Ni/AlS.G.) catalysts were synthesized by an impregnation procedure. The influence of varying the calcination temperature of the sol gel made supports on catalyst activity was tested in ethanol reforming reaction. The characteristics of the sol gel alumina supports and Ni catalysts were affected by the calcination temperature of the supports. The structure of the sol gel made alumina supports was transformed in the order of γ → (γ + θ) → θ-alumina as the calcination temperature of the supports increased from 600 °C to 1000 °C. Both hydrogen yield and ethanol conversion presented a volcano-shaped behavior with maximum values of 4.3 mol/mol ethanol fed and 99.5%, respectively. The optimum values were exhibited over Ni/AlS.G800 (Ni catalyst supported on sol gel made alumina calcined at 800 °C). The high performance of the Ni/AlS.G800 catalyst may be attributed to the strong interaction of Ni species and sol gel made alumina which lead to high nickel dispersion and small particle size.
Collapse
|
17
|
Guggilla VS, Mangalampalli VPS, Akyurtlu JF, Akyurtlu A. H2Production by Autothermal Reforming ofn-Dodecane over Highly Active Ru–Ni–Ce–Al2O3Catalyst. Ind Eng Chem Res 2012. [DOI: 10.1021/ie300726k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Choi J, Zhang S, Hill JM. Reducibility and toluenehydrogenation activity of nickel catalysts supported on γ-Al2O3and κ-Al2O3. Catal Sci Technol 2012. [DOI: 10.1039/c1cy00301a] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
|
20
|
Hydrodechlorination of 1,2,4-trichlorbenzene over supported ruthenium catalysts on various supports. CATAL COMMUN 2011. [DOI: 10.1016/j.catcom.2011.06.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
21
|
Wang R, Li Y, Shi R, Yang M. Effect of metal–support interaction on the catalytic performance of Ni/Al2O3 for selective hydrogenation of isoprene. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.molcata.2011.05.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
LI H, CHEN H, ZHANG Y, GAO C, ZHAO Y. Preparation and Characterization of Carbon-Covered Alumina Supported Ni Catalyst and Its Catalytic Performance for Hydrogenation. CHINESE JOURNAL OF CATALYSIS 2011. [DOI: 10.3724/sp.j.1088.2011.00729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Li H, Xu Y, Gao C, Zhao Y. Structural and textural evolution of Ni/γ-Al2O3 catalyst under hydrothermal conditions. Catal Today 2010. [DOI: 10.1016/j.cattod.2010.07.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Guggilla VS, Akyurtlu J, Akyurtlu A, Blankson I. Steam Reforming of n-Dodecane over Ru−Ni-Based Catalysts. Ind Eng Chem Res 2010. [DOI: 10.1021/ie100811g] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vidya Sagar Guggilla
- Chemical Engineering Department, Hampton University, Hampton, Virginia 23668, and NASA Glenn Research Center, Cleveland, Ohio 44135
| | - Jale Akyurtlu
- Chemical Engineering Department, Hampton University, Hampton, Virginia 23668, and NASA Glenn Research Center, Cleveland, Ohio 44135
| | - Ates Akyurtlu
- Chemical Engineering Department, Hampton University, Hampton, Virginia 23668, and NASA Glenn Research Center, Cleveland, Ohio 44135
| | - Isaiah Blankson
- Chemical Engineering Department, Hampton University, Hampton, Virginia 23668, and NASA Glenn Research Center, Cleveland, Ohio 44135
| |
Collapse
|
25
|
Shao Y, Xu Z, Wan H, Chen H, Liu F, Li L, Zheng S. Influence of ZrO2 properties on catalytic hydrodechlorination of chlorobenzene over Pd/ZrO2 catalysts. JOURNAL OF HAZARDOUS MATERIALS 2010; 179:135-140. [PMID: 20303664 DOI: 10.1016/j.jhazmat.2010.02.070] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 02/19/2010] [Accepted: 02/20/2010] [Indexed: 05/29/2023]
Abstract
Pd/ZrO(2) catalysts using different ZrO(2) as supports were prepared using the deposition-precipitation method and were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, N(2) adsorption, temperature programmed reduction, H(2) chemisorption and measurement of surface hydroxyl group. Catalytic hydrodechlorination (HDC) of chlorobenzene was used to evaluate the activity and stability of the catalyst. The results showed that ZrO(2) support calcined at 300 degrees C was amorphous in nature, whereas ZrO(2) supports calcined at 500 and 600 degrees C consisted of both monoclinic and tetragonal phases. In addition, increasing calcination temperature led to the decrease of specific surface area and surface hydroxyl group content of the ZrO(2) support. For temperature programmed reduction of PdO/ZrO(2) samples, two H(2) consumption peaks with varied reduction temperature were distinctly observed, implying the existence of different Pd species in Pd/ZrO(2) catalysts. In addition, Pd/ZrO(2) catalyst with ZrO(2) calcined at 500 degrees C had a relatively higher content of Pd species with strong metal-support interaction than other catalysts. For catalytic HDC of chlorobenzene, Pd/ZrO(2) catalyst with ZrO(2) support calcined at 500 degrees C exhibited a higher initial activity and stability as compared to other catalysts, indicative of a strong dependence of the catalytic behavior of the Pd/ZrO(2) catalyst on the support properties for catalytic HDC of chlorobenzene.
Collapse
Affiliation(s)
- Yun Shao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, PR China
| | | | | | | | | | | | | |
Collapse
|
26
|
Morphological and structural features of individual and composite nanooxides with alumina, silica, and titania in powders and aqueous suspensions. POWDER TECHNOL 2009. [DOI: 10.1016/j.powtec.2009.06.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Chen J, Zhou S, Ci D, Zhang J, Wang R, Zhang J. Influence of Supports on Structure and Performance of Nickel Phosphide Catalysts for Hydrodechlorination of Chlorobenzene. Ind Eng Chem Res 2009. [DOI: 10.1021/ie8018643] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jixiang Chen
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, Department of Catalysis Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China, and Xinao New-energy (Beijing) Science and Technology Corporation, Beijing 100176, China
| | - Shaojun Zhou
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, Department of Catalysis Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China, and Xinao New-energy (Beijing) Science and Technology Corporation, Beijing 100176, China
| | - Donghui Ci
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, Department of Catalysis Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China, and Xinao New-energy (Beijing) Science and Technology Corporation, Beijing 100176, China
| | - Jianxiang Zhang
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, Department of Catalysis Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China, and Xinao New-energy (Beijing) Science and Technology Corporation, Beijing 100176, China
| | - Rijie Wang
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, Department of Catalysis Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China, and Xinao New-energy (Beijing) Science and Technology Corporation, Beijing 100176, China
| | - Jiyan Zhang
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, Department of Catalysis Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China, and Xinao New-energy (Beijing) Science and Technology Corporation, Beijing 100176, China
| |
Collapse
|
28
|
Xia C, Liu Y, Xu J, Yu J, Qin W, Liang X. Catalytic hydrodechlorination reactivity of monochlorophenols in aqueous solutions over palladium/carbon catalyst. CATAL COMMUN 2009. [DOI: 10.1016/j.catcom.2008.10.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|