• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4610646)   Today's Articles (293)   Subscriber (49380)
For: Amarasekara AS, Hasan MA. Pd/C catalyzed conversion of levulinic acid to γ-valerolactone using alcohol as a hydrogen donor under microwave conditions. CATAL COMMUN 2015;60:5-7. [DOI: 10.1016/j.catcom.2014.11.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]  Open
Number Cited by Other Article(s)
1
Patel A, Patel J, Pathan S. Highly Active and Dispersed Pd Nanoparticles Stabilized by Lacunary Phosphomolybdate: Synthesis, Characterization, and Liquid Phase Hydrogenation of Levulinic Acid to γ-Valerolactone. Inorg Chem 2023;62:6970-6980. [PMID: 37104732 DOI: 10.1021/acs.inorgchem.3c00205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
2
Mazumdar NJ, Deshmukh G, Rovea A, Kumar P, Arredondo-Arechavala M, Manyar H. Insights into selective hydrogenation of levulinic acid using copper on manganese oxide octahedral molecular sieves. ROYAL SOCIETY OPEN SCIENCE 2022;9:220078. [PMID: 35911198 PMCID: PMC9326277 DOI: 10.1098/rsos.220078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/06/2022] [Indexed: 06/13/2023]
3
Hijazi A, Khalaf N, Kwapinski W, Leahy JJ. Catalytic valorisation of biomass levulinic acid into gamma valerolactone using formic acid as a H2 donor: a critical review. RSC Adv 2022;12:13673-13694. [PMID: 35530384 PMCID: PMC9073962 DOI: 10.1039/d2ra01379g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/29/2022] [Indexed: 12/12/2022]  Open
4
Renewable bio-based routes to γ-valerolactone in the presence of hafnium nanocrystalline or hierarchical microcrystalline zeotype catalysts. J Catal 2022. [DOI: 10.1016/j.jcat.2021.12.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
5
Taran OP, Sychev VV, Kuznetsov BN. γ-Valerolactone as a Promising Solvent and Basic Chemical Product: Catalytic Synthesis from Plant Biomass Components. CATALYSIS IN INDUSTRY 2021. [DOI: 10.1134/s2070050421030119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
6
Ngumbu DM, Kapfunde TA, Oklu NK, Makhubela BCE. Transformation of bio‐derived levulinic acid to gamma‐valerolactone by cyclopentadienone ruthenium(0) catalyst precursors bearing simple supporting ligands. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
7
Xu Y, Zhang H, Li H, Yang S. Catalytic Transfer Hydrogenation of Biomass-derived Levulinates to γ-valerolactone Using Alcohols as H-donors. CURRENT GREEN CHEMISTRY 2020. [DOI: 10.2174/2213346107666200129104358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
8
Supported Bimetallic Catalysts for the Solvent-Free Hydrogenation of Levulinic Acid to γ-Valerolactone: Effect of Metal Combination (Ni-Cu, Ni-Co, Cu-Co). Catalysts 2020. [DOI: 10.3390/catal10111354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]  Open
9
Lattice distorted MnCo oxide materials as efficient catalysts for transfer hydrogenation of levulinic acid using formic acid as H-donor. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115721] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
10
Hsiao CY, Chiu HY, Lin TY, Lin KYA. A comparative study on microwave-assisted catalytic transfer hydrogenation of levulinic acid to γ-valerolactone using Ru/C, Pt/C, and Pd/C. CHEM ENG COMMUN 2020. [DOI: 10.1080/00986445.2020.1791833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
11
Liu X, Lan G, Su P, Qian L, Ramirez Reina T, Wang L, Li Y, Liu J. Highly stable Ru nanoparticles incorporated in mesoporous carbon catalysts for production of γ-valerolactone. Catal Today 2020. [DOI: 10.1016/j.cattod.2018.12.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
12
Wang K, Heltzel J, Sandefur E, Culley K, Lemcoff G, Voutchkova-Kostal A. Transfer hydrogenation of levulinic acid from glycerol and ethanol using water-soluble iridium N-heterocyclic carbene complexes. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
13
Yu Z, Lu X, Xiong J, Li X, Bai H, Ji N. Heterogeneous Catalytic Hydrogenation of Levulinic Acid to γ-Valerolactone with Formic Acid as Internal Hydrogen Source. CHEMSUSCHEM 2020;13:2916-2930. [PMID: 32153131 DOI: 10.1002/cssc.202000175] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/07/2020] [Indexed: 06/10/2023]
14
García A, Sanchis R, Miguel PJ, Dejoz AM, Pico MP, López ML, Álvarez-Serrano I, García T, Solsona B. Low temperature conversion of levulinic acid into γ-valerolactone using Zn to generate hydrogen from water and nickel catalysts supported on sepiolite. RSC Adv 2020;10:20395-20404. [PMID: 35517762 PMCID: PMC9054250 DOI: 10.1039/d0ra04018e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/21/2020] [Indexed: 11/21/2022]  Open
15
Petricci E, Cini E, Taddei M. Metal Catalysis with Microwaves in Organic Synthesis: a Personal Account. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
16
Yanyan Xu, Lu T, Bu N, Luo Q, Qing Y, Lin L. Catalytic Conversion of Levulinic Acid to γ-Valerolactone over Hierarchical AlPO4-5 Supported Nickel Catalysts. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2020. [DOI: 10.1134/s0036024419130338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
17
Solid acid catalyzed aldol dimerization of levulinic acid for the preparation of C10 renewable fuel and chemical feedstocks. CATAL COMMUN 2019. [DOI: 10.1016/j.catcom.2019.02.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]  Open
18
Amarasekara AS, Ali SR, Fernando H, Sena V, Timofeeva TV. A comparison of homogeneous and heterogeneous Brønsted acid catalysts in the reactions of meso-erythritol with aldehyde/ketones. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0226-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]  Open
19
Lin TY, Lin KYA. Microwave-enhanced catalytic transfer hydrogenation of levulinic acid to γ-valerolactone using zirconium-based metal organic frameworks: A comparative study with conventional heating processes. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2018.11.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
20
Zhou YH, Luo YJ, Lin YT, Huang YB. Enhanced Transfer Hydrogenation Activity of Zr-Doped Mesoporous Silica through Sol-Gel Method for the Reduction of Biomass-Derived Unsaturated Carbon-Oxygen Bonds. ChemistrySelect 2018. [DOI: 10.1002/slct.201802176] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
21
Yoshii T, Nakatsuka K, Mizobuchi T, Kuwahara Y, Itoi H, Mori K, Kyotani T, Yamashita H. Effects of Carbon Support Nanostructures on the Reactivity of a Ru Nanoparticle Catalyst in a Hydrogen Transfer Reaction. Org Process Res Dev 2018. [DOI: 10.1021/acs.oprd.8b00207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
22
Amarasekara AS, Garcia‐Obergon R, Thompson AK. Vanillin‐based polymers: IV. Hydrovanilloin epoxy resins. J Appl Polym Sci 2018. [DOI: 10.1002/app.47000] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
23
Liu X, Astruc D. Development of the Applications of Palladium on Charcoal in Organic Synthesis. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800343] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
24
Biancalana L, Fulignati S, Antonetti C, Zacchini S, Provinciali G, Pampaloni G, Raspolli Galletti AM, Marchetti F. Ruthenium p-cymene complexes with α-diimine ligands as catalytic precursors for the transfer hydrogenation of ethyl levulinate to γ-valerolactone. NEW J CHEM 2018. [DOI: 10.1039/c8nj03569e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
25
Wang R, Chen L, Zhang X, Zhang Q, Li Y, Wang C, Ma L. Conversion of levulinic acid to γ-valerolactone over Ru/Al2O3–TiO2 catalyst under mild conditions. RSC Adv 2018;8:40989-40995. [PMID: 35557899 PMCID: PMC9091660 DOI: 10.1039/c8ra07938b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/21/2018] [Indexed: 01/23/2023]  Open
26
Pd/C Catalysis under Microwave Dielectric Heating. Catalysts 2017. [DOI: 10.3390/catal7030089] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]  Open
27
Catalytic transfer hydrogenation/hydrogenolysis of guaiacol to cyclohexane over bimetallic RuRe/C catalysts. CATAL COMMUN 2016. [DOI: 10.1016/j.catcom.2016.08.022] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]  Open
28
Ftouni J, Muñoz-Murillo A, Goryachev A, Hofmann JP, Hensen EJM, Lu L, Kiely CJ, Bruijnincx PCA, Weckhuysen BM. ZrO2 Is Preferred over TiO2 as Support for the Ru-Catalyzed Hydrogenation of Levulinic Acid to γ-Valerolactone. ACS Catal 2016. [DOI: 10.1021/acscatal.6b00730] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
29
Amarasekara AS, Animashaun MA. Acid Catalyzed Competitive Esterification and Ketalization of Levulinic Acid with 1,2 and 1,3-Diols: The Effect of Heterogeneous and Homogeneous Catalysts. Catal Letters 2016. [DOI: 10.1007/s10562-016-1812-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
30
Amarasekara AS, Ha U. Acid catalyzed condensation of levulinic acid with glyoxylic acid: synthesis of 1-methyl-2,8-dioxabicyclo[3.3.0]oct-4-ene-3,7-dione. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.04.103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
31
Al-Shaal MG, Calin M, Delidovich I, Palkovits R. Microwave-assisted reduction of levulinic acid with alcohols producing γ-valerolactone in the presence of a Ru/C catalyst. CATAL COMMUN 2016. [DOI: 10.1016/j.catcom.2015.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]  Open
32
Gilkey MJ, Xu B. Heterogeneous Catalytic Transfer Hydrogenation as an Effective Pathway in Biomass Upgrading. ACS Catal 2016. [DOI: 10.1021/acscatal.5b02171] [Citation(s) in RCA: 466] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
33
Gowda RR, Chen EYX. Recyclable Earth-Abundant Metal Nanoparticle Catalysts for Selective Transfer Hydrogenation of Levulinic Acid to Produce γ-Valerolactone. CHEMSUSCHEM 2016;9:181-185. [PMID: 26735911 DOI: 10.1002/cssc.201501402] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Indexed: 06/05/2023]
34
Li H, Fang Z, Yang S. Direct Catalytic Transformation of Biomass Derivatives into Biofuel Component γ-Valerolactone with Magnetic Nickel-Zirconium Nanoparticles. Chempluschem 2015;81:135-142. [DOI: 10.1002/cplu.201500492] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Indexed: 11/08/2022]
35
Microwave-Assisted Conversion of Levulinic Acid to γ-Valerolactone Using Low-Loaded Supported Iron Oxide Nanoparticles on Porous Silicates. APPLIED SCIENCES-BASEL 2015. [DOI: 10.3390/app5030532] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
36
Muzart J. Pd-Catalyzed Hydrogen-Transfer Reactions from Alcohols to C=C, C=O, and C=N Bonds. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500401] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
37
Metzker G, Burtoloso ACB. Conversion of levulinic acid into γ-valerolactone using Fe3(CO)12: mimicking a biorefinery setting by exploiting crude liquors from biomass acid hydrolysis. Chem Commun (Camb) 2015;51:14199-202. [DOI: 10.1039/c5cc02993g] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA