1
|
Wang LH, Azam M, Yan XH, Tai XS. Synthesis, Structural Characterization, and Hirschfeld Surface Analysis of a New Cu(II) Complex and Its Role in Photocatalytic CO 2 Reduction. Molecules 2024; 29:1957. [PMID: 38731448 PMCID: PMC11085493 DOI: 10.3390/molecules29091957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/10/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
A new Cu(II) complex, [CuL1L2(CH3COO)2(H2O)]·H2O, was synthesized by the reaction of Cu(CH3COO)2·H2O, 6-phenylpyridine-2-carboxylic acid (HL1), and 4-[5-(pyridin-4-yl)-1,3,4-oxadiazol-2-yl]pyridine (L2) in ethanol-water (v:v = 1:1) solution. The Cu(II) complex was characterized using elemental analysis, IR, UV-vis, TG-DTA, and single-crystal X-ray analysis. The fluorescence properties of the copper complex were also evaluated. The structural analysis results show that the Cu(II) complex crystallizes in the triclinic system with space group P-1. The Cu(II) ion in the complex is five-coordinated with one O atom (O2) and one N atom (N1) from one 6-phenylpyridine-2-carboxylate ligand (L1), one N atom (N2) from 4-[5-(pyridin-4-yl)-1,3,4-oxadiazol-2-yl]pyridine ligand (L2), one O atom (O4) from acetate, and one O atom (O5) from a coordinated water molecule, and it adopts a distorted trigonal bipyramidal geometry. Cu(II) complex molecules form a two-dimensional layer structure through intramolecular and intermolecular O-H…O hydrogen bonding. The two-dimensional layer structures further form a three-dimensional network structure by π-π stacking interactions of aromatic rings. The analysis of the Hirschfeld surface of the Cu(II) complex shows that the H…H contacts made the most significant contribution (46.6%) to the Hirschfeld surface, followed by O…H/H…O, N…H/H…N and C…H/H…C contacts with contributions of 14.2%, 13.8%, and 10.2%, respectively. In addition, the photocatalytic CO2 reduction using Cu(II) complex as a catalyst is investigated under UV-vis light irradiation. The findings reveal that the main product is CO, with a yield of 10.34 μmol/g and a selectivity of 89.4% after three hours.
Collapse
Affiliation(s)
- Li-Hua Wang
- College of Biology and Oceanography, Weifang University, Weifang 261061, China
| | - Mohammad Azam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Xi-Hai Yan
- College of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, China
| | - Xi-Shi Tai
- College of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, China
| |
Collapse
|
2
|
Sahu AK, Zhao XS, Upadhyayula S. Ceria-based photocatalysts in water-splitting for hydrogen production and carbon dioxide reduction. CATALYSIS REVIEWS 2023. [DOI: 10.1080/01614940.2023.2166227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Aloka Kumar Sahu
- The University of Queensland−IIT Delhi Academy of Research (UQIDAR), Hauz Khas, New Delhi, India
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
- School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, Australia
| | - Xiu Song Zhao
- School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, Australia
| | - Sreedevi Upadhyayula
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| |
Collapse
|
3
|
Maarisetty D, Mary R, Hang DR, Mohapatra P, Baral SS. The role of material defects in the photocatalytic CO2 reduction: Interfacial properties, thermodynamics, kinetics and mechanism. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Mohamed RM, Mkhalid IA, Alhaddad M, Basaleh A, Alzahrani KA, Ismail AA. Construction of hierarchical ZnS@ZnO secured from metal – organic framework- ZnS@ZIF-8 for enhanced photoreduction of CO2. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.08.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Bie C, Yu H, Cheng B, Ho W, Fan J, Yu J. Design, Fabrication, and Mechanism of Nitrogen-Doped Graphene-Based Photocatalyst. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2003521. [PMID: 33458902 DOI: 10.1002/adma.202003521] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/13/2020] [Indexed: 06/12/2023]
Abstract
Solving energy and environmental problems through solar-driven photocatalysis is an attractive and challenging topic. Hence, various types of photocatalysts have been developed successively to address the demands of photocatalysis. Graphene-based materials have elicited considerable attention since the discovery of graphene. As a derivative of graphene, nitrogen-doped graphene (NG) particularly stands out. Nitrogen atoms can break the undifferentiated structure of graphene and open the bandgap while endowing graphene with an uneven electron density distribution. Therefore, NG retains nearly all the advantages of original graphene and is equipped with several novel properties, ensuring infinite possibilities for NG-based photocatalysis. This review introduces the atomic and band structures of NG, summarizes in situ and ex situ synthesis methods, highlights the mechanism and advantages of NG in photocatalysis, and outlines its applications in different photocatalysis directions (primarily hydrogen production, CO2 reduction, pollutant degradation, and as photoactive ingredient). Lastly, the central challenges and possible improvements of NG-based photocatalysis in the future are presented. This study is expected to learn from the past and achieve progress toward the future for NG-based photocatalysis.
Collapse
Affiliation(s)
- Chuanbiao Bie
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, 528200, P. R. China
| | - Huogen Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Bei Cheng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Wingkei Ho
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, N. T., Hong Kong, 999077, P. R. China
| | - Jiajie Fan
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Jiaguo Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, 528200, P. R. China
| |
Collapse
|
6
|
Gao S, Fronczek FR, Maverick AW. A copper complex of an unusual hy-droxy-carboxyl-ate ligand: [Cu(bpy)(C 4H 4O 6)]. Acta Crystallogr E Crystallogr Commun 2021; 77:282-285. [PMID: 33953952 PMCID: PMC8061107 DOI: 10.1107/s2056989021001286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/02/2021] [Indexed: 11/27/2022]
Abstract
A copper(II) complex, (2,2'-bi-pyridine-κ2 N,N')[2-hy-droxy-2-(hy-droxy-methyl-κO)propane-dioato-κ2 O 1,O 3]copper(II), [Cu(C4H4O6)(C10H8N2)], containing the unusual anionic chelating ligand 2-(hy-droxy-meth-yl)tartronate, has been synthesized. [Cu(bpy)2(NO3)](NO3) was mixed with ascorbic acid and Dabco (1,4-di-aza-bicyclo-[2.2.2]octa-ne) in DMF (dimethylformamide) solution in the presence of air to produce the title compound. The structure consists of square-pyramidal complexes that are joined by Cu⋯O contacts [2.703 (2) Å] into centrosymmetric dimers. The C4H4O6 2- ligand, which occupies three coordination sites at Cu, has previously been identified as an oxidation product of ascorbate ion.
Collapse
Affiliation(s)
- Sen Gao
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Frank R. Fronczek
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Andrew W. Maverick
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
7
|
Metal-organic framework-based photocatalysts for carbon dioxide reduction to methanol: A review on progress and application. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2020.101374] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
|
9
|
Iqbal F, Mumtaz A, Shahabuddin S, Abd Mutalib MI, Shaharun MS, Nguyen TD, Khan MR, Abdullah B. Photocatalytic reduction of
CO
2
to methanol over
ZnFe
2
O
4
/
TiO
2
(p–n) heterojunctions under visible light irradiation. JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY 2020; 95:2208-2221. [DOI: 10.1002/jctb.6408] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Affiliation(s)
- Farukh Iqbal
- Department of Chemical and Environmental Engineering, School of EngineeringRMIT University Melbourne Australia
- Chemical Engineering DepartmentUniversiti Teknologi PETRONAS Bandar Seri Iskandar Malaysia
| | - Asad Mumtaz
- Department of Fundamental and Applied SciencesUniversiti Teknologi PETRONAS Bandar Seri Iskandar Malaysia
- School of Natural Sciences (SNS)National University of Sciences and Technology (NUST) Islamabad Pakistan
| | - Syed Shahabuddin
- Department of Science, School of TechnologyPandit Deendayal Petroleum University Gandhinagar India
| | | | - Maizatul Shima Shaharun
- Department of Fundamental and Applied SciencesUniversiti Teknologi PETRONAS Bandar Seri Iskandar Malaysia
| | - Trinh Duy Nguyen
- Center of Excellence for Green Energy Environmental Nanomaterials (CE@GrEEN)Nguyen Tat Thanh University Ho Chi Minh City Vietnam
| | - Maksudur Rahman Khan
- Department of Natural Resource and Chemical EngineeringUniversiti Malaysia Pahang Pekan Malaysia
| | - Bawadi Abdullah
- Chemical Engineering DepartmentUniversiti Teknologi PETRONAS Bandar Seri Iskandar Malaysia
- Chemical Engineering DepartmentCenter of Contaminant Control and Utilization (CenCoU), Institute Contaminant Management for Oil and Gas Bandar Seri Iskandar Malaysia
| |
Collapse
|
10
|
CuMo xW (1-x)O 4 Solid Solution Display Visible Light Photoreduction of CO 2 to CH 3OH Coupling with Oxidation of Amine to Imine. NANOMATERIALS 2020; 10:nano10071303. [PMID: 32635203 PMCID: PMC7408418 DOI: 10.3390/nano10071303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 06/24/2020] [Accepted: 06/28/2020] [Indexed: 11/17/2022]
Abstract
The photoreduction of carbon dioxide (CO2) to valuable fuels is a promising strategy for the prevention of rising atmospheric levels of CO2 and the depletion of fossil fuel reserves. However, most reported photocatalysts are only active in the ultraviolet region, which necessitates co-catalysts and sacrificial agents in the reaction systems, leading to an unsatisfied economy of the process in energy and atoms. In this research, a CuMoxW(1-x)O4 solid solution was synthesized, characterized, and tested for the photocatalytic reduction of CO2 in the presence of amines. The results revealed that the yield of CH3OH from CO2 was 1017.7 μmol/g under 24 h visible light irradiation using CuW0.7Mo0.3O4 (x = 0.7) as the catalyst. This was associated with the maximum conversion (82.1%) of benzylamine to N-benzylidene benzylamine with high selectivity (>99%). These results give new insight into the photocatalytic reduction of CO2 for valuable chemical products in an economic way.
Collapse
|
11
|
Li X, Yu J, Jaroniec M, Chen X. Cocatalysts for Selective Photoreduction of CO2 into Solar Fuels. Chem Rev 2019; 119:3962-4179. [DOI: 10.1021/acs.chemrev.8b00400] [Citation(s) in RCA: 1094] [Impact Index Per Article: 182.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xin Li
- College of Forestry and Landscape Architecture, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Jiaguo Yu
- State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Mietek Jaroniec
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Xiaobo Chen
- Department of Chemistry, University of Missouri—Kansas City, Kansas City, Missouri 64110, United States
| |
Collapse
|
12
|
|
13
|
Abiotic Synthesis with the C-C Bond Formation in Ethanol from CO 2 over (Cu,M)(O,S) Catalysts with M = Ni, Sn, and Co. Sci Rep 2017; 7:10094. [PMID: 28855735 PMCID: PMC5577111 DOI: 10.1038/s41598-017-10705-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 08/11/2017] [Indexed: 11/08/2022] Open
Abstract
We demonstrate copper-based (Cu,M)(O,S) oxysulfide catalysts with M = Ni, Sn, and Co for the abiotic chemical synthesis of ethanol (EtOH) with the C-C bond formation by passing carbon dioxide (CO2) through an aqueous dispersion bath at ambient environment. (Cu,Ni)(O,S) with 12.1% anion vacancies had the best EtOH yield, followed by (Cu,Sn)(O,S) and (Cu,Co)(O,S). The ethanol yield with 0.2 g (Cu,Ni)(O,S) catalyst over a span of 20 h achieved 5.2 mg. The ethanol yield is inversely proportional to the amount of anion vacancy. The kinetic mechanism for converting the dissolved CO2 into the C2 oxygenate is proposed. Molecular interaction, pinning, and bond weakening with anion vacancy of highly strained catalyst, the electron hopping at Cu+/Cu2+ sites, and the reaction orientation of hydrocarbon intermediates are the three critical issues in order to make the ambient chemical conversion of inorganic CO2 to organic EtOH with the C-C bond formation in water realized. On the other hand, Cu(O,S) with the highest amount of 22.7% anion vacancies did not produce ethanol due to its strain energy relaxation opposing to the pinning and weakening of O-H and C-O bonds.
Collapse
|
14
|
CuMnOS Nanoflowers with Different Cu +/Cu 2+ Ratios for the CO 2-to-CH 3OH and the CH 3OH-to-H 2 Redox Reactions. Sci Rep 2017; 7:41194. [PMID: 28117456 PMCID: PMC5259710 DOI: 10.1038/srep41194] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/15/2016] [Indexed: 11/08/2022] Open
Abstract
A conservative CO2-Methanol (CH3OH) regeneration cycle, to capture and reutilize the greenhouse gas of CO2 by aqueous hydrogenation for industry-useful CH3OH and to convert aqueous CH3OH solution by dehydrogenation for the clean energy of hydrogen (H2), is demonstrated at normal temperature and pressure (NTP) with two kinds of CuMnOS nanoflower catalysts. The [Cu+]-high CuMnOS led to a CH3OH yield of 21.1 mmol·g−1catal.·h−1 in the CuMnOS-CO2-H2O system and the other [Cu+]-low one had a H2 yield of 7.65 mmol·g−1catal.·h−1 in the CuMnOS-CH3OH-H2O system. The successful redox reactions at NTP rely on active lattice oxygen of CuMnOS catalysts and its charge (hole or electron) transfer ability between Cu+ and Cu2+. The CO2-hydrogenated CH3OH in aqueous solution is not only a fuel but also an ideal liquid hydrogen storage system for transportation application.
Collapse
|
15
|
Zhou SS, Liu SQ. Photocatalytic reduction of CO2based on a CeO2photocatalyst loaded with imidazole fabricated N-doped graphene and Cu(ii) as cocatalysts. Photochem Photobiol Sci 2017; 16:1563-1569. [DOI: 10.1039/c7pp00211d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cocatalysts are vital for improving photocatalytic activity.
Collapse
Affiliation(s)
- Shan-Shan Zhou
- Jiangsu Key Laboratory of Environmental Functional Materials
- School of Chemistry
- Biology and Material Engineering
- Suzhou University of Science and Technology
- Suzhou 215009
| | - Shou-Qing Liu
- Jiangsu Key Laboratory of Environmental Functional Materials
- School of Chemistry
- Biology and Material Engineering
- Suzhou University of Science and Technology
- Suzhou 215009
| |
Collapse
|
16
|
CO2 hydrogenation to methanol using Cu-Zn catalyst supported on reduced graphene oxide nanosheets. J CO2 UTIL 2016. [DOI: 10.1016/j.jcou.2016.07.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
17
|
Mo S, Li S, Li J, peng S, Chen J, Chen Y. Promotional effects of Ce on the activity of Mn Al oxide catalysts derived from hydrotalcites for low temperature benzene oxidation. CATAL COMMUN 2016. [DOI: 10.1016/j.catcom.2016.09.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
18
|
|