Li Z, Chen G, Shao Z, Zhang H, Guo X. The Effect of Iron Content on the Ammonia Selective Catalytic Reduction Reaction (NH
3-SCR) Catalytic Performance of FeO
x/SAPO-34.
INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022;
19:14749. [PMID:
36429468 PMCID:
PMC9691003 DOI:
10.3390/ijerph192214749]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Iron-based catalysts are regarded as promising candidates for the ammonia selective catalytic reduction reaction (NH3-SCR) which show good catalytic activity at medium and high temperatures, whereas SAPO-34 molecular sieves have a micro-pore structure and are ideal catalyst carriers. In this paper, four FeOx/SAPO-34 molecular sieve catalysts with different iron contents (Fe = 1%, 2%, 3%, 4%) were prepared using an impregnation method. The effect of iron content on the surface properties and catalytic activity was investigated by a series of characterization techniques including XRD, SEM, BET, XPS, H2-TPR and NH3-TPD. Iron species in the FeOx/SAPO-34 catalysts exist in the form of isolated iron ions or well-dispersed small crystals and iron oxide species clusters. With the addition of iron content, the integrity of CHA (chabazite) zeolite structure remained, but the crystallinity was affected. The FeOx/SAPO-34 catalyst with 3% Fe loading showed a relatively flat surface with no large-diameter particles and strong oxidation-reduction ability. Meanwhile, more acidic sites are exposed, which accelerated the process of catalytic reaction. Thus, the FeOx/SAPO-34 catalyst with 3% Fe showed the best NO conversion performance among the four catalysts prepared and maintained more than 90% NO conversion efficiency in a wide temperature range from 310 °C to 450 °C.
Collapse