1
|
Recent Advances in the Application of Enzyme Processing Assisted by Ultrasound in Agri-Foods: A Review. Catalysts 2022. [DOI: 10.3390/catal12010107] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The intensification of processes is essential for the sustainability of the biorefinery concept. Enzyme catalysis assisted by ultrasound (US) may offer interesting opportunities in the agri-food sector because the cavitation effect provided by this technology has been shown to improve the efficiency of the biocatalysts. This review presents the recent advances in this field, focused on three main applications: ultrasound-assisted enzymatic extractions (UAEE), US hydrolysis reactions, and synthesis reactions assisted by US for the manufacturing of agri-food produce and ingredients, enabling the upgrading of agro-industrial waste. Some theoretical and experimental aspects of US that must be considered are also reviewed. Ultrasonic intensity (UI) is the main parameter affecting the catalytic activity of enzymes, but a lack of standardization for its quantification makes it unsuitable to properly compare results. Applications of enzyme catalysis assisted by US in agri-foods have been mostly concentrated in UAEE of bioactive compounds. In second place, US hydrolysis reactions have been applied for juice and beverage manufacturing, with some interesting applications for producing bioactive peptides. In last place, a few efforts have been performed regarding synthesis reactions, mainly through trans and esterification to produce structured lipids and sugar esters, while incipient applications for the synthesis of oligosaccharides show promising results. In most cases, US has improved the reaction yield, but much information is lacking on how different sonication conditions affect kinetic parameters. Future research should be performed under a multidisciplinary approach for better comprehension of a very complex phenomenon that occurs in very short time periods.
Collapse
|
2
|
Aqueous-Phase Cellulose Hydrolysis over Zeolite HY Nanocrystals Grafted on Anatase Titania Nanofibers. Catal Letters 2021. [DOI: 10.1007/s10562-020-03402-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
3
|
Huang L, Wang S, Zhang H, Li D, Zhang Y, Zhao L, Xin Q, Ye H, Li H. Enhanced hydrolysis of cellulose by catalytic polyethersulfone membranes with straight-through catalytic channels. BIORESOURCE TECHNOLOGY 2019; 294:122119. [PMID: 31520853 DOI: 10.1016/j.biortech.2019.122119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/31/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
The aim of this study was to prepare sulfonated graphene oxide/polyether sulfone (GO-SO3H/PES) mixed matrix membranes (GPMMMs) with high porosity and straight-through catalytic channels by segregation and used for dynamic and continuous hydrolysis of cellulose. The high porosity and segregation increased the exposure of catalysts synergistically and the formative GO-SO3H enriched, straight-through catalytic channels had higher catalytic performance, enhancing the diffusion of hydrolytic products. Dynamic hydrolysis of cellulose is more efficient than static hydrolysis due to the enhanced contact between cellulose and catalysts achieved by the extra driving forces, and the further degradation of produced saccharides was suppressed due to the high freedom of products. The TRS reached 98.18% after 1 h at 150 °C with a catalyst/cellulose mass ratio of 1:5. More importantly, the immobilization of GO-SO3H by PES improved its stability and reusability at high reaction temperature. This strategy provides guidance to the design of high-performance catalytic membranes.
Collapse
Affiliation(s)
- Lilan Huang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tianjin Polytechnic University, Tianjin 300387, China; School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Shaofei Wang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tianjin Polytechnic University, Tianjin 300387, China; School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Han Zhang
- School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Deyuan Li
- School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Yuzhong Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tianjin Polytechnic University, Tianjin 300387, China; School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Lizhi Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tianjin Polytechnic University, Tianjin 300387, China; School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Qingping Xin
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tianjin Polytechnic University, Tianjin 300387, China; School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Hui Ye
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tianjin Polytechnic University, Tianjin 300387, China; School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Hong Li
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tianjin Polytechnic University, Tianjin 300387, China; School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| |
Collapse
|
4
|
|
5
|
Priecel P, Perez Mejia JE, Carà PD, Lopez-Sanchez JA. Microwaves in the Catalytic Valorisation of Biomass Derivatives. SUSTAINABLE CATALYSIS FOR BIOREFINERIES 2018. [DOI: 10.1039/9781788013567-00243] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The application of microwave irradiation in the transformation of biomass has been receiving particular interest in recent years due to the use of polar media in such processes and it is now well-known that for biomass conversion, and particularly for lignocellulose hydrolysis, microwave irradiation can dramatically increase reaction rates with no negative consequences on product selectivity. However, it is only in the last ten years that the utilisation of microwaves has been coupled with catalysis aiming towards valorising biomass components or their derivatives via a range of reactions where high selectivity is required in addition to enhanced conversions. The reduced reaction times and superior yields are particularly attractive as they might facilitate the transition towards flow reactors and intensified production. As a consequence, several reports now describe the catalytic transformation of biomass derivatives via hydrogenation, oxidation, dehydration, esterification and transesterification using microwaves. Clearly, this technology has a huge potential for biomass conversion towards chemicals and fuels and will be an important tool within the biorefinery toolkit. The aim of this chapter is to give the reader an overview of the exciting scientific work carried out to date where microwave reactors and catalysis are combined in the transformation of biomass and its derivatives to higher value molecules and products.
Collapse
Affiliation(s)
- Peter Priecel
- Stephenson Institute for Renewable Energy, Department of Chemistry, University of Liverpool Liverpool L69 7ZD UK
| | - Javier Eduardo Perez Mejia
- Stephenson Institute for Renewable Energy, Department of Chemistry, University of Liverpool Liverpool L69 7ZD UK
| | - Piera Demma Carà
- Stephenson Institute for Renewable Energy, Department of Chemistry, University of Liverpool Liverpool L69 7ZD UK
- MicroBioRefinery Facility, Department of Chemistry, University of Liverpool Liverpool L69 7ZD UK
| | - Jose A. Lopez-Sanchez
- Stephenson Institute for Renewable Energy, Department of Chemistry, University of Liverpool Liverpool L69 7ZD UK
- MicroBioRefinery Facility, Department of Chemistry, University of Liverpool Liverpool L69 7ZD UK
| |
Collapse
|
7
|
Zhang Z, Song J, Han B. Catalytic Transformation of Lignocellulose into Chemicals and Fuel Products in Ionic Liquids. Chem Rev 2016; 117:6834-6880. [PMID: 28535680 DOI: 10.1021/acs.chemrev.6b00457] [Citation(s) in RCA: 372] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Innovative valorization of naturally abundant and renewable lignocellulosic biomass is of great importance in the pursuit of a sustainable future and biobased economy. Ionic liquids (ILs) as an important kind of green solvents and functional fluids have attracted significant attention for the catalytic transformation of lignocellulosic feedstocks into a diverse range of products. Taking advantage of some unique properties of ILs with different functions, the catalytic transformation processes can be carried out more efficiently and potentially with lower environmental impacts. Also, a new product portfolio may be derived from catalytic systems with ILs as media. This review focuses on the catalytic chemical conversion of lignocellulose and its primary ingredients (i.e., cellulose, hemicellulose, and lignin) into value-added chemicals and fuel products using ILs as the reaction media. An outlook is provided at the end of this review to highlight the challenges and opportunities associated with this interesting and important area.
Collapse
Affiliation(s)
- Zhanrong Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, People's Republic of China
| | - Jinliang Song
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, People's Republic of China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, People's Republic of China
| |
Collapse
|