1
|
Liu J, Perez OM, Lavergne D, Rasu L, Murphy E, Galvez-Rodriguez A, Bergens SH. One-Step Electropolymerization of a Dicyanobenzene-Carbazole-Imidazole Dye to Prepare Photoactive Redox Polymer Films. Polymers (Basel) 2023; 15:3340. [PMID: 37631397 PMCID: PMC10457835 DOI: 10.3390/polym15163340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/25/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
To the best of our knowledge, this study reports the first direct electropolymerization of a dicyanobenzene-carbazole dye functionalized with an imidazole group to prepare redox- and photoactive porous organic polymer (POP) films in controlled amounts. The POP films were grown on indium-doped tin oxide (ITO) and carbon surfaces using a new monomer, 1-imidazole-2,4,6-tri(carbazol-9-yl)-3,5-dicyanobenzene (1, 3CzImIPN), through a simple one-step process. The structure and activities of the POP films were investigated as photoelectrodes for electrooxidations, as heterogeneous photocatalysts for photosynthetic olefin isomerizations, and for solid-state photoluminescence behavior tunable by lithium-ion concentrations in solution. The results demonstrate that the photoredox-POPs can be used as efficient photocatalysts, and they have potential applications in sensing.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Steven H. Bergens
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| |
Collapse
|
2
|
Li C, Luo Y, Huang Y, Qiu H, Lu Z. A Low-Cost Test Method for Accurate Detection of Different Excited-State Species with a Lifetime Span over 5 Orders of Magnitude in One Time Window. Anal Chem 2023; 95:8150-8155. [PMID: 37155725 DOI: 10.1021/acs.analchem.3c00319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Accurate quantification on the quantum yields (φ) of both the prompt fluorescence (PF) and the delayed fluorescence (DF) species is quite essential for the clarification of molecular design rationales for thermally activated delayed fluorescence (TADF) luminogens. Currently, most φPF and φDF data of TADF fluorophores were acquired through time-correlated single-photon counting (TCSPC) lifetime measurement systems. However, because of their equal-time-channel working manner, so far all the commercially available TCSPC systems cannot render accurate measurement on φPF of TADF materials due to the lack of enough valid data points in the faster decay region of the corresponding photoluminescence (PL) decay curves. Although an intensified charge coupled device (ICCD) system equipped with a streak camera or an optical parametric oscillation laser has been proven to be a powerful tool for accurate determination of φPF and φDF of TADF fluorophores, the ultrahigh cost of these ICCD systems makes them inaccessible to most users. Herein, by replacing the timing module of a commercial TCSPC system with a low-cost and versatile time-to-digital converter (TDC) module, we developed a modified TCSPC system that can work in an unequal-time-channel manner. The resultant TDC-TCSPC system can not only concurrently determine the accurate lifetime of PF and DF species whose lifetime span even exceeds 5 orders of magnitude in just one time window but also render accurate measurements on φPF and φDF of TADF fluorophores. The reliability of the TDC-TCSPC method was verified through TCSPC- and ICCD-based comparative experiments on ACMPS, a known TADF fluorophore. Our results not only can provide a low-cost and convenient test method for accurate determination of key experimental data of TADF materials but also will facilitate deeper understanding of the molecular design principles for high-performance TADF materials.
Collapse
Affiliation(s)
- Chuan Li
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Yanju Luo
- Analytical & Testing Center, Sichuan University, Chengdu 610064, P. R. China
| | - Yan Huang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Hailin Qiu
- Orient KOJI Limited, Tianjin 300122, P. R. China
| | - Zhiyun Lu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
3
|
Suleymanova A, Shafikov M, Chen X, Wang Y, Czerwieniec R, Bruce DW. Construction and Performance of OLED Devices Prepared from Liquid-crystalline TADF Materials. Phys Chem Chem Phys 2022; 24:22115-22121. [DOI: 10.1039/d2cp02684h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The device performance is reported from three compounds which show both thermally activated delayed fluorescence and liquid crystallinity, which use the donor 3,6-bis(3,4-didodecyloxyphenyl)carbazole. Two of the compounds, whose photophysics were...
Collapse
|
4
|
Chen YK, Jayakumar J, Hsieh CM, Wu TL, Liao CC, Pandidurai J, Ko CL, Hung WY, Cheng CH. Triarylamine-Pyridine-Carbonitriles for Organic Light-Emitting Devices with EQE Nearly 40. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008032. [PMID: 34297444 DOI: 10.1002/adma.202008032] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 05/16/2021] [Indexed: 06/13/2023]
Abstract
Highly efficient thermally activated delayed fluorescence (TADF) molecules are in urgent demand for solid-state lighting and full-color displays. Here, the design and synthesis of three triarylamine-pyridine-carbonitrile-based TADF compounds, TPAPPC, TPAmPPC, and tTPAmPPC, are shown. They exhibit excellent photoluminescence quantum yields of 79-100% with small ΔEST values, fast reverse intersystem crossing (RISC), and high horizontal dipole ratios (Θ// = 86-88%) in the thin films leading to the enhancement of device light outcoupling. Consequently, a green organic light-emitting diode (OLED) based on TPAmPPC shows a high average external quantum efficiency of 38.8 ± 0.6%, a current efficiency of 130.1 ± 2.1 cd A-1 , and a power efficiency of 136.3 ± 2.2 lm W-1 . The highest device efficiency of 39.8% appears to be record-breaking among TADF-based OLEDs to date. In addition, the TPAmPPC-based device shows superior operation lifetime and high-temperature resistance. It is worth noting that the TPA-PPC-based materials have excellent optical properties and the potential for making them strong candidates for TADF practical application.
Collapse
Affiliation(s)
- Yi-Kuan Chen
- Department of Chemistry, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
| | - Jayachandran Jayakumar
- Department of Chemistry, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
| | - Chia-Min Hsieh
- Department of Chemistry, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
| | - Tien-Lin Wu
- Department of Chemistry, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Chun-Cheng Liao
- Department of Chemistry, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
| | - Jayabalan Pandidurai
- Department of Chemistry, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
| | - Chang-Lun Ko
- Institute of Optoelectronic Sciences, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Wen-Yi Hung
- Institute of Optoelectronic Sciences, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Chien-Hong Cheng
- Department of Chemistry, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| |
Collapse
|
5
|
Li X, Maffettone PM, Che Y, Liu T, Chen L, Cooper AI. Combining machine learning and high-throughput experimentation to discover photocatalytically active organic molecules. Chem Sci 2021; 12:10742-10754. [PMID: 34476057 PMCID: PMC8372320 DOI: 10.1039/d1sc02150h] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/18/2021] [Indexed: 11/21/2022] Open
Abstract
Light-absorbing organic molecules are useful components in photocatalysts, but it is difficult to formulate reliable structure–property design rules. More than 100 million unique chemical compounds are documented in the PubChem database, and a significant sub-set of these are π-conjugated, light-absorbing molecules that might in principle act as photocatalysts. Nature has used natural selection to evolve photosynthetic assemblies; by contrast, our ability to navigate the enormous potential search space of organic photocatalysts in the laboratory is limited. Here, we integrate experiment, computation, and machine learning to address this challenge. A library of 572 aromatic organic molecules was assembled with diverse compositions and structures, selected on the basis of availability in our laboratory, rather than more sophisticated criteria. This training library was then assessed experimentally for sacrificial photocatalytic hydrogen evolution using a high-throughput, automated method. Quantum chemical calculations and machine learning were used to visualise, interpret, and ultimately to predict the photocatalytic activities of these molecules, covering a much broader chemical space than for previous polymer photocatalyst libraries. By applying unsupervised learning to the molecular structures, we identified structural features that were common in molecules with high catalytic activity. Further analysis using calculated molecular descriptors within a suite of supervised classification algorithms revealed that light absorption, exciton electron affinity, electron affinity, exciton binding energy, and singlet–triplet energy gap had correlations with the photocatalytic performance. These trained predictive models can be used in future studies as filters to deprioritise or discard would-be low-activity candidate molecules from experiments, and to prioritize more favourable candidates. As a demonstration, we used virtual in silico experiments to show that it was possible to halve the experimental cost of finding 50% of the most active photocatalysts by using the machine learning model as an experimental advisor. We further showed that the ML advisor trained on the 572-molecule library could be used to make predictions for an unseen set of 96 molecules, achieving equivalent predictive accuracies to those in the initial training set. This marks a step toward the machine-learning assisted discovery of molecular organic photocatalysts and the approach might also be applied to problems beyond photocatalytic hydrogen evolution, such as CO2 reduction and photoredox chemistry. We developed models to predict the photoactivity of organic molecules for photocatalytic hydrogen evolution by integrating experiment, computation, and machine learning. This marks a step toward the data-driven discovery of molecular photocatalysts.![]()
Collapse
Affiliation(s)
- Xiaobo Li
- Department of Chemistry & Materials Innovation Factory, University of Liverpool 51 Oxford Street Liverpool L7 3NY UK
| | - Phillip M Maffettone
- Department of Chemistry & Materials Innovation Factory, University of Liverpool 51 Oxford Street Liverpool L7 3NY UK .,National Synchrotron Light Source II, Brookhaven National Laboratory Upton New York 11973 USA
| | - Yu Che
- Department of Chemistry & Materials Innovation Factory, University of Liverpool 51 Oxford Street Liverpool L7 3NY UK .,Leverhulme Research Centre for Functional Materials Design, Materials Innovation Factory and Department of Chemistry, University of Liverpool 51 Oxford Street Liverpool L7 3NY UK
| | - Tao Liu
- Department of Chemistry & Materials Innovation Factory, University of Liverpool 51 Oxford Street Liverpool L7 3NY UK
| | - Linjiang Chen
- Department of Chemistry & Materials Innovation Factory, University of Liverpool 51 Oxford Street Liverpool L7 3NY UK .,Leverhulme Research Centre for Functional Materials Design, Materials Innovation Factory and Department of Chemistry, University of Liverpool 51 Oxford Street Liverpool L7 3NY UK
| | - Andrew I Cooper
- Department of Chemistry & Materials Innovation Factory, University of Liverpool 51 Oxford Street Liverpool L7 3NY UK .,Leverhulme Research Centre for Functional Materials Design, Materials Innovation Factory and Department of Chemistry, University of Liverpool 51 Oxford Street Liverpool L7 3NY UK
| |
Collapse
|
6
|
Rajamalli P, Rizzi F, Li W, Jinks MA, Gupta AK, Laidlaw BA, Samuel IDW, Penfold TJ, Goldup SM, Zysman‐Colman E. Using the Mechanical Bond to Tune the Performance of a Thermally Activated Delayed Fluorescence Emitter*. Angew Chem Int Ed Engl 2021; 60:12066-12073. [PMID: 33666324 PMCID: PMC8251797 DOI: 10.1002/anie.202101870] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Indexed: 12/12/2022]
Abstract
We report the characterization of rotaxanes based on a carbazole-benzophenone thermally activated delayed fluorescence luminophore. We find that the mechanical bond leads to an improvement in key photophysical properties of the emitter, notably an increase in photoluminescence quantum yield and a decrease in the energy difference between singlet and triplet states, as well as fine tuning of the emission wavelength, a feat that is difficult to achieve when using covalently bound substituents. Computational simulations, supported by X-ray crystallography, suggest that this tuning of properties occurs due to weak interactions between the axle and the macrocycle that are enforced by the mechanical bond. This work highlights the benefits of using the mechanical bond to refine existing luminophores, providing a new avenue for emitter optimization that can ultimately increase the performance of these molecules.
Collapse
Affiliation(s)
- Pachaiyappan Rajamalli
- Organic Semiconductor CentreEaStCHEM School of ChemistryUniversity of St AndrewsSt AndrewsFifeKY16 9STUK
- Materials Research CentreIndian Institute of ScienceBangalore560012India
| | - Federica Rizzi
- ChemistryUniversity of SouthamptonHighfieldSouthamptonSO17 1BJUK
| | - Wenbo Li
- Organic Semiconductor CentreSUPA School of Physics and AstronomyUniversity of St AndrewsSt AndrewsFifeKY16 9SSUK
| | - Michael A. Jinks
- ChemistryUniversity of SouthamptonHighfieldSouthamptonSO17 1BJUK
| | - Abhishek Kumar Gupta
- Organic Semiconductor CentreEaStCHEM School of ChemistryUniversity of St AndrewsSt AndrewsFifeKY16 9STUK
- Organic Semiconductor CentreSUPA School of Physics and AstronomyUniversity of St AndrewsSt AndrewsFifeKY16 9SSUK
| | - Beth A. Laidlaw
- Chemistry, School of Natural and Environmental SciencesNewcastle UniversityNewcastle upon TyneNE1 7RUUK
| | - Ifor D. W. Samuel
- Organic Semiconductor CentreSUPA School of Physics and AstronomyUniversity of St AndrewsSt AndrewsFifeKY16 9SSUK
| | - Thomas J. Penfold
- Chemistry, School of Natural and Environmental SciencesNewcastle UniversityNewcastle upon TyneNE1 7RUUK
| | | | - Eli Zysman‐Colman
- Organic Semiconductor CentreEaStCHEM School of ChemistryUniversity of St AndrewsSt AndrewsFifeKY16 9STUK
| |
Collapse
|
7
|
Rajamalli P, Rizzi F, Li W, Jinks MA, Gupta AK, Laidlaw BA, Samuel IDW, Penfold TJ, Goldup SM, Zysman‐Colman E. Using the Mechanical Bond to Tune the Performance of a Thermally Activated Delayed Fluorescence Emitter**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pachaiyappan Rajamalli
- Organic Semiconductor Centre EaStCHEM School of Chemistry University of St Andrews St Andrews Fife KY16 9ST UK
- Materials Research Centre Indian Institute of Science Bangalore 560012 India
| | - Federica Rizzi
- Chemistry University of Southampton Highfield Southampton SO17 1BJ UK
| | - Wenbo Li
- Organic Semiconductor Centre SUPA School of Physics and Astronomy University of St Andrews St Andrews Fife KY16 9SS UK
| | - Michael A. Jinks
- Chemistry University of Southampton Highfield Southampton SO17 1BJ UK
| | - Abhishek Kumar Gupta
- Organic Semiconductor Centre EaStCHEM School of Chemistry University of St Andrews St Andrews Fife KY16 9ST UK
- Organic Semiconductor Centre SUPA School of Physics and Astronomy University of St Andrews St Andrews Fife KY16 9SS UK
| | - Beth A. Laidlaw
- Chemistry, School of Natural and Environmental Sciences Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Ifor D. W. Samuel
- Organic Semiconductor Centre SUPA School of Physics and Astronomy University of St Andrews St Andrews Fife KY16 9SS UK
| | - Thomas J. Penfold
- Chemistry, School of Natural and Environmental Sciences Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Stephen M. Goldup
- Chemistry University of Southampton Highfield Southampton SO17 1BJ UK
| | - Eli Zysman‐Colman
- Organic Semiconductor Centre EaStCHEM School of Chemistry University of St Andrews St Andrews Fife KY16 9ST UK
| |
Collapse
|
8
|
Hempe M, Kukhta NA, Danos A, Fox MA, Batsanov AS, Monkman AP, Bryce MR. Vibrational Damping Reveals Vibronic Coupling in Thermally Activated Delayed Fluorescence Materials. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2021; 33:3066-3080. [PMID: 34267422 PMCID: PMC8273894 DOI: 10.1021/acs.chemmater.0c03783] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 04/05/2021] [Indexed: 05/18/2023]
Abstract
We investigate a series of D-A molecules consisting of spiro[acridan-9,9'-fluorene] as the donor and 2-phenylenepyrimidine as the acceptor. In two of the materials, a spiro center effectively electronically isolates the D unit from (consequently) optically innocent yet structurally influential adamantyl side groups. In a third material, adamantyl groups attached directly to the acceptor strongly influence the electronic properties. Steady-state and time-resolved photophysical studies in solution, Zeonex polymer matrix, and neat films reveal that the substituents impact the efficiency of vibronic coupling between singlet and triplet states relevant to reverse intersystem crossing (rISC) and thermally activated delayed fluorescence (TADF), without significantly changing the singlet-triplet gap in the materials. The adamantyl groups serve to raise the segmental mass and inertia, thereby damping intramolecular motions (both vibrational and rotational). This substitution pattern reveals the role of large-amplitude (primarily D-A dihedral angle rocking) motions on reverse intersystem crossing (rISC), as well as smaller contributions from low-amplitude or dampened vibrations in solid state. We demonstrate that rISC still occurs when the high-amplitude motions are suppressed in Zeonex and discuss various vibronic coupling scenarios that point to an underappreciated role of intersegmental motions that persist in rigid solids. Our results underline the complexity of vibronic couplings in the mediation of rISC and provide a synthetic tool to enable future investigations of vibronic coupling through selective mechanical dampening with no impact on electronic systems.
Collapse
Affiliation(s)
- Matthias Hempe
- Chemistry
Department, Durham University, South Road, Durham DH1 3LE, U.K.
| | - Nadzeya A. Kukhta
- Chemistry
Department, Durham University, South Road, Durham DH1 3LE, U.K.
| | - Andrew Danos
- Physics
Department, Durham University, South Road, Durham DH1 3LE, U.K.
| | - Mark A. Fox
- Chemistry
Department, Durham University, South Road, Durham DH1 3LE, U.K.
| | - Andrei S. Batsanov
- Chemistry
Department, Durham University, South Road, Durham DH1 3LE, U.K.
| | - Andrew P. Monkman
- Physics
Department, Durham University, South Road, Durham DH1 3LE, U.K.
| | - Martin R. Bryce
- Chemistry
Department, Durham University, South Road, Durham DH1 3LE, U.K.
| |
Collapse
|
9
|
Bryden MA, Zysman-Colman E. Organic thermally activated delayed fluorescence (TADF) compounds used in photocatalysis. Chem Soc Rev 2021; 50:7587-7680. [PMID: 34002736 DOI: 10.1039/d1cs00198a] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Organic compounds that show Thermally Activated Delayed Fluorescence (TADF) have become wildly popular as next-generation emitters in organic light emitting diodes (OLEDs). Since 2016, a subset of these have found increasing use as photocatalysts. This review comprehensively highlights their potential by documenting the diversity of the reactions where an organic TADF photocatalyst can be used in lieu of a noble metal complex photocatalyst. Beyond the small number of TADF photocatalysts that have been used to date, the analysis conducted within this review reveals the wider potential of organic donor-acceptor TADF compounds as photocatalysts. A discussion of the benefits of compounds showing TADF for photocatalysis is presented, which paints a picture of a very promising future for organic photocatalyst development.
Collapse
Affiliation(s)
- Megan Amy Bryden
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK.
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK.
| |
Collapse
|
10
|
Kaufmann M, Müller C, Cullen AA, Brandon MP, Dietzek B, Pryce MT. Photophysics of Ruthenium(II) Complexes with Thiazole π-Extended Dipyridophenazine Ligands. Inorg Chem 2020; 60:760-773. [PMID: 33356204 DOI: 10.1021/acs.inorgchem.0c02765] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transition-metal-based donor-acceptor systems can produce long-lived excited charge-transfer states by visible-light irradiation. The novel ruthenium(II) polypyridyl type complexes Ru1 and Ru2 based on the dipyridophenazine ligand (L0) directly linked to 4-hydroxythiazoles of different donor strengths were synthesized and photophysically characterized. The excited-state dynamics were investigated by femtosecond-to-nanosecond transient absorption and nanosecond emission spectroscopy complemented by time-dependent density functional theory calculations. These results indicate that photoexcitation in the visible region leads to the population of both metal-to-ligand charge-transfer (1MLCT) and thiazole (tz)-induced intraligand charge-transfer (1ILCT) states. Thus, the excited-state dynamics is described by two excited-state branches, namely, the population of (i) a comparably short-lived phenazine-centered 3MLCT state (τ ≈ 150-400 ps) and (ii) a long-lived 3ILCT state (τ ≈ 40-300 ns) with excess charge density localized on the phenazine and tz moieties. Notably, the ruthenium(II) complexes feature long-lived dual emission with lifetimes in the ranges τEm,1 ≈ 40-300 ns and τEm,2 ≈ 100-200 ns, which are attributed to emission from the 3ILCT and 3MLCT manifolds, respectively.
Collapse
Affiliation(s)
- Martin Kaufmann
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | - Carolin Müller
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, Jena 07743, Germany.,Research Department Functional Interfaces, Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, Jena 07745, Germany
| | - Aoibhin A Cullen
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | - Michael P Brandon
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | - Benjamin Dietzek
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, Jena 07743, Germany.,Research Department Functional Interfaces, Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, Jena 07745, Germany.,Center for Energy and Environmental Chemistry Jena, Friedrich Schiller University Jena, Lessingstraße 8, Jena 07743, Germany
| | - Mary T Pryce
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| |
Collapse
|
11
|
Wang Y, Gao XW, Li J, Chao D. Merging an organic TADF photosensitizer and a simple terpyridine–Fe(iii) complex for photocatalytic CO2 reduction. Chem Commun (Camb) 2020; 56:12170-12173. [DOI: 10.1039/d0cc05047d] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
An efficient earth-abundant photocatalytic system composed of an organic TADF photosensitizer and a simple terpyridine–Fe(iii) complex was developed for CO2 reduction.
Collapse
Affiliation(s)
- Yanan Wang
- School of Materials Science and Chemical Engineering
- Ningbo University
- Ningbo 315211
- China
| | - Xue-Wang Gao
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Junli Li
- School of Materials Science and Chemical Engineering
- Ningbo University
- Ningbo 315211
- China
| | - Duobin Chao
- School of Materials Science and Chemical Engineering
- Ningbo University
- Ningbo 315211
- China
| |
Collapse
|
12
|
Wu QA, Chen F, Ren CC, Liu XF, Chen H, Xu LX, Yu XC, Luo SP. Donor–acceptor fluorophores as efficient energy transfer photocatalysts for [2 + 2] photodimerization. Org Biomol Chem 2020; 18:3707-3716. [DOI: 10.1039/c9ob02735a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Donor–acceptor fluorophores can act as efficient energy transfer photocatalysts to activate enone substrates, realizing photodimerization and isomerization reaction of enone substrates without precious metal photocatalysts.
Collapse
Affiliation(s)
- Qing-An Wu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Feng Chen
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Chen-Chao Ren
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Xue-Fen Liu
- Qianjiang College
- Hangzhou Normal University
- Hangzhou 310006
- China
| | - Hao Chen
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Liang-Xuan Xu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Xiao-Cong Yu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Shu-Ping Luo
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology
- Zhejiang University of Technology
- Hangzhou 310014
- China
| |
Collapse
|