1
|
Li D, Zhao L, Xia Q, Liu L, Fang W, Liu Y, Zhou Z, Long Y, Han X, Zhang Y, Wang J, Wu Y, Liu H. CoS 2 Nanoparticles Anchored on MoS 2 Nanorods As a Superior Bifunctional Electrocatalyst Boosting Li 2 O 2 Heteroepitaxial Growth for Rechargeable Li-O 2 Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105752. [PMID: 34897989 DOI: 10.1002/smll.202105752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/11/2021] [Indexed: 06/14/2023]
Abstract
Developing an excellent bifunctional catalyst is essential for the commercial application of Li-O2 batteries. Heterostructures exhibit great application potential in the field of energy catalysis because of the accelerated charge transfer and increased active sites on their surfaces. In this work, CoS2 nanoparticles decorated on MoS2 nanorods are constructed and act as a superior cathode catalyst for Li-O2 batteries. Coupling MoS2 and CoS2 can not only synergistically enhance their electrical conductivity and electrochemical activity, but also promote the heteroepitaxial growth of discharge products on the heterojunction interfaces, thus delivering high discharge capacity, stable cycle performance, and good rate capability.
Collapse
Affiliation(s)
- Deyuan Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Lanling Zhao
- School of Physics, Shandong University, Jinan, 250100, China
| | - Qing Xia
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Lili Liu
- School of Energy Science and Engineering, Nanjing Tech University, Jiangsu Province, Nanjing, 211816, China
| | - Weiwei Fang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry, University (NFU), Nanjing, 210037, China
| | - Yao Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Zhaorui Zhou
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Yuxin Long
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Xue Han
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Yiming Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Jun Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Yuping Wu
- School of Energy Science and Engineering, Nanjing Tech University, Jiangsu Province, Nanjing, 211816, China
| | - Huakun Liu
- University of Wollongong, Institute for Superconducting and Electronic Materials (ISEM), Wollongong, NSW, 2522, Australia
| |
Collapse
|
2
|
Galkin KI, Ananikov VP. The Increasing Value of Biomass: Moving From C6 Carbohydrates to Multifunctionalized Building Blocks via 5-(hydroxymethyl)furfural. ChemistryOpen 2020; 9:1135-1148. [PMID: 33204585 PMCID: PMC7646257 DOI: 10.1002/open.202000233] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/06/2020] [Indexed: 12/26/2022] Open
Abstract
Recent decades have been marked by enormous progress in the field of synthesis and chemistry of 5-(hydroxymethyl)furfural (HMF), an important platform chemical widely recognized as the "sleeping giant" of sustainable chemistry. This multifunctional furanic compound is viewed as a strong link for the transition from the current fossil-based industry to a sustainable one. However, the low chemical stability of HMF significantly undermines its synthetic potential. A possible solution to this problem is synthetic diversification of HMF by modifying it into more stable multifunctional building blocks for further synthetic purposes.
Collapse
Affiliation(s)
- Konstantin I. Galkin
- Zelinsky Institute of Organic ChemistryRussian Academy of SciencesLeninsky Prospekt, 47Moscow119991Russia
- N. E. Bauman Moscow State Technical University2nd Baumanskaya Street, 5/1Moscow105005Russia
| | - Valentine P. Ananikov
- Zelinsky Institute of Organic ChemistryRussian Academy of SciencesLeninsky Prospekt, 47Moscow119991Russia
| |
Collapse
|
3
|
Xu J, Mao M, Yu H. Functionalization of sheet structure Co–Mo–S with Ni(OH)2 for efficient photocatalytic hydrogen evolution. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-019-04065-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|