1
|
Xu C, Long Q, Zhong S, Wang W, Guo J, Yang J, Wang X, Dai L. Insights into the Synergistic Catalytic Effect of TiO 2 Supported V-W Oxides for Selective C-H Bond Oxidation of Cyclohexane to KA Oil. Chemistry 2024; 30:e202402780. [PMID: 39256166 DOI: 10.1002/chem.202402780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 09/12/2024]
Abstract
It is urgent to develop an efficient and stable non-noble metal catalyst for selective C-H bond oxidation of cyclohexane. Herein, a series of V-W oxides supported on TiO2 catalysts (V-W/TiO2) were fabricated. The V-W/TiO2 catalysts exhibited much higher catalytic activity for the selective oxidation of cyclohexane to KA oil, compared to that of V/TiO2 and W/TiO2 catalysts. The good distribution of active metals and the synergistic effect were responsible for the enhanced catalytic activity. H2-TPR results disclosed that the presence of V in V-W/TiO2 affected the reducibility of W6+ species, and XPS verified that an electronic interaction was formed between them. Such results led to good catalytic reusability of V-W/TiO2 catalyst during the reactions, and no obvious activity loss was found after six runs. The reaction mechanism was investigated, and the results verified that hydroxyl radicals generated from H2O2 homolysis were the main active oxidative species. Theoretical study revealed that V dopant could regulate electronic structure of adjacent O atom, facilitating the adsorption of cyclohexane, and lower energy was needed for the rate-limiting step over V-W/TiO2 during the whole oxidation reaction. This work developed an efficient V-W/TiO2 catalyst for the selective oxidation of cyclohexane via a synergistic effect.
Collapse
Affiliation(s)
- Cai Xu
- Institute of Zhejiang University -, Quzhou, Quzhou, 324000, PR China
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, PR China
| | - Quanfu Long
- Institute of Zhejiang University -, Quzhou, Quzhou, 324000, PR China
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, PR China
| | - Shandi Zhong
- Institute of Zhejiang University -, Quzhou, Quzhou, 324000, PR China
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, PR China
| | - Wenjin Wang
- Institute of Zhejiang University -, Quzhou, Quzhou, 324000, PR China
| | - Jia Guo
- Institute of Zhejiang University -, Quzhou, Quzhou, 324000, PR China
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, PR China
| | - Jianhai Yang
- Institute of Zhejiang University -, Quzhou, Quzhou, 324000, PR China
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, PR China
| | - Xiaozhong Wang
- Institute of Zhejiang University -, Quzhou, Quzhou, 324000, PR China
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, PR China
| | - Liyan Dai
- Institute of Zhejiang University -, Quzhou, Quzhou, 324000, PR China
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, PR China
| |
Collapse
|
2
|
Zhang Y, Feng XL, Ni JY, Fu B, Shen HM, She YB. Efficient Inhibition of Deep Conversion of Partial Oxidation Products in C-H Bonds' Functionalization Utilizing O 2 via Relay Catalysis of Dual Metalloporphyrins on Surface of Hybrid Silica Possessing Capacity for Product Exclusion. Biomimetics (Basel) 2024; 9:272. [PMID: 38786482 PMCID: PMC11117990 DOI: 10.3390/biomimetics9050272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/10/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
To inhibit the deep conversion of partial oxidation products (POX-products) in C-H bonds' functionalization utilizing O2, 5-(4-(chloromethyl)phenyl)-10,15,20-tris(perfluorophenyl)porphyrin cobalt(II) and 5-(4-(chloromethyl)phenyl)-10,15,20-tris(perfluorophenyl)porphyrin copper(II) were immobilized on the surface of hybrid silica to conduct relay catalysis on the surface. Fluorocarbons with low polarity and heterogeneous catalysis were devised to decrease the convenient accessibility of polar POX-products to catalytic centers on the lower polar surface. Relay catalysis between Co and Cu was designed to utilize the oxidation intermediates alkyl hydroperoxides to transform more C-H bonds. Systematic characterizations were conducted to investigate the structure of catalytic materials and confirm their successful syntheses. Applied to C-H bond oxidation, not only deep conversion of POX-products was inhibited but also substrate conversion and POX-product selectivity were improved simultaneously. For cyclohexane oxidation, conversion was improved from 3.87% to 5.27% with selectivity from 84.8% to 92.3%, which was mainly attributed to the relay catalysis on the surface excluding products. The effects of the catalytic materials, product exclusion, relay catalysis, kinetic study, substrate scope, and reaction mechanism were also investigated. To our knowledge, a practical and novel strategy was presented to inhibit the deep conversion of POX-products and to achieve efficient and accurate oxidative functionalization of hydrocarbons. Also, a valuable protocol was provided to avoid over-reaction in other chemical transformations requiring high selectivity.
Collapse
Affiliation(s)
- Yu Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (Y.Z.); (J.-Y.N.); (B.F.)
| | - Xiao-Ling Feng
- Hangzhou Copiore Chemical Technology Co., Ltd., Hangzhou 310012, China;
| | - Jia-Ye Ni
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (Y.Z.); (J.-Y.N.); (B.F.)
| | - Bo Fu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (Y.Z.); (J.-Y.N.); (B.F.)
| | - Hai-Min Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (Y.Z.); (J.-Y.N.); (B.F.)
| | - Yuan-Bin She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (Y.Z.); (J.-Y.N.); (B.F.)
| |
Collapse
|
3
|
Zhou XY, Fu B, Jin WD, Wang X, Wang KK, Wang M, She YB, Shen HM. Efficient and Selective Oxygenation of Cycloalkanes and Alkyl Aromatics with Oxygen through Synergistic Catalysis of Bimetallic Active Centers in Two-Dimensional Metal-Organic Frameworks Based on Metalloporphyrins. Biomimetics (Basel) 2023; 8:325. [PMID: 37504212 PMCID: PMC10807029 DOI: 10.3390/biomimetics8030325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
Confined catalytic realms and synergistic catalysis sites were constructed using bimetallic active centers in two-dimensional metal-organic frameworks (MOFs) to achieve highly selective oxygenation of cycloalkanes and alkyl aromatics with oxygen towards partly oxygenated products. Every necessary characterization was carried out for all the two-dimensional MOFs. The selective oxygenation of cycloalkanes and alkyl aromatics with oxygen was accomplished with exceptional catalytic performance using two-dimensional MOF Co-TCPPNi as a catalyst. Employing Co-TCPPNi as a catalyst, both the conversion and selectivity were improved for all the hydrocarbons investigated. Less disordered autoxidation at mild conditions, inhibited free-radical diffusion by confined catalytic realms, and synergistic C-H bond oxygenation catalyzed by second metal center Ni employing oxygenation intermediate R-OOH as oxidant were the factors for the satisfying result of Co-TCPPNi as a catalyst. When homogeneous metalloporphyrin T(4-COOCH3)PPCo was replaced by Co-TCPPNi, the conversion in cyclohexane oxygenation was enhanced from 4.4% to 5.6%, and the selectivity of partly oxygenated products increased from 85.4% to 92.9%. The synergistic catalytic mechanisms were studied using EPR research, and a catalysis model was obtained for the oxygenation of C-H bonds with O2. This research offered a novel and essential reference for both the efficient and selective oxygenation of C-H bonds and other key chemical reactions involving free radicals.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hai-Min Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (X.-Y.Z.); (B.F.); (W.-D.J.); (X.W.); (K.-K.W.); (M.W.); (Y.-B.S.)
| |
Collapse
|
4
|
Ni JY, He B, Huang H, Ning L, Liu QP, Wang KK, Wu HK, Shen HM, She YB. Cycloalkanes oxidation with O2 in high-efficiency and high-selectivity catalyzed by 3D MOFs with limiting domain and Zn(AcO)2 through synergistic mode. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
5
|
Peroxidative Oxidation of Cyclohexane Using 3d Metal Complexes with Hydrazone-Derived Ligands as Catalysts: Exploring (Un)Conventional Conditions. INORGANICS 2023. [DOI: 10.3390/inorganics11020062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Two tetranuclear and two mononuclear Cu(II) complexes with arylhydrazones of malononitrile derived ligands (compounds 1–2 and 3–4, respectively), one trinuclear Co(II/III) complex with an arylhydrazone of acetoacetanilide (5) and one tetranuclear Zn(II) complex of 3-(2-carboxyphenyl-hydrazone)pentane-2,4-dione (6) were screened as potential catalysts in the peroxidative oxidation of cyclohexane by aqueous H2O2 in acetonitrile. The best results were attained in the presence of pyrazine-2-carboxylic acid (PCA) with 1 (26% yield, TON = 52.0) and with 2 (24%, TON = 48.0) after 4 h at 40 °C. In the presence of complexes 5 and 6, no oxygenated products were detected in the studied conditions. The employment of non-conventional conditions like supercritical carbon dioxide (scCO2) as reaction medium or microwave (MW) irradiation was assessed for complexes 1 and 2. After 6 h in acetonitrile–scCO2, at 50 °C and with HNO3 as promoter, only 17% yield was achieved using 1 as catalyst, and 21% using 2. Total yields of oxygenates up to 14 (with 1) and 13% (2) and TOFs of 56.0 and 52.0 h−1, respectively, were obtained working under MW irradiation at 70 °C and for the much shorter time of 0.5 h.
Collapse
|
6
|
Guo AB, Qin JW, Wang KK, Liu QP, Wu HK, Wang M, Shen HM, She YB. Synergetic catalytic oxidation of C-H bonds in cycloalkanes and alkyl aromatics by dimetallic active sites in 3D metalloporphyrinic MOFs employing O2 as oxidant with increased conversion and unconsumed selectivity. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Shen HM, Ye HL, Ni JY, Wang KK, Zhou XY, She YB. Oxidation of α-C-H bonds in alkyl aromatics with O2 catalyzed by highly dispersed cobalt(II) coordinated in confined reaction channel of porphyrin-based POFs with simultaneously enhanced conversion and selectivity. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
8
|
Ni JY, Cong SZ, Ning L, Wang M, Shen HM, She YB. Binary catalytic systems constructed by porphyrin cobalts(II) with confining nano-region and Zn(OAc)2 for oxygenation of cycloalkanes with O2 in relay mode. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
9
|
Shen HM, Guo AB, Zhang Y, Liu QP, Qin JW, She YB. Relay catalysis of hydrocarbon oxidation using O2 in the confining domain of 3D metalloporphyrin-based metal-organic frameworks with bimetallic catalytic centers. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Colaiezzi R, Lazzarini A, Ferella F, Paolucci V, Di Giuseppe A, Crucianelli M. Catalytic oxygen atom transfer promoted by tethered Mo(VI) dioxido complexes onto silica-coated magnetic nanoparticles. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
11
|
Taheri M. WITHDRAWN: Dicationic ionic liquid-phosphotungstate cross-linked immobilized on chitosan as hybrid catalyst for solvent-free cyclohexane oxidation using molecular oxygen. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Comparing Separation
vs
. Fresh Start to Assess Reusability of Pd/C Catalyst in Liquid‐Phase Hydrogenation. ChemCatChem 2021. [DOI: 10.1002/cctc.202100631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Enhanced performance of binary WO3/N-doped carbon composites for the catalytic oxidation of benzyl alcohol under mild conditions. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
Abutaleb A, Ali MA. A comprehensive and updated review of studies on the oxidation of cyclohexane to produce ketone-alcohol (KA) oil. REV CHEM ENG 2021. [DOI: 10.1515/revce-2020-0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Oxidation of cyclohexane is an essential chemical reaction for the industrial manufacture of cyclohexanol and cyclohexanone. These two compounds, together known as ketone–alcohol (KA) oil, are the main feedstock for nylon 6 and nylon 6,6 productions. Several types of catalysts and reaction conditions have been used for cyclohexane oxidation. This paper presents a thorough literature review of catalytic materials used for cyclohexane oxidation to produce KA oil using oxygen, air and other oxidizing agents as well as utilizing different solvents. This review covers research and development reported over the years 2014–2020. This review aims to comprehend the type of catalysts, solvents, oxidants and other reaction parameters used for the oxidation of cyclohexane. Three types of cyclohexane oxidation processes namely thermocatalytic, photocatalytic and microwave-assisted catalytic have been reported. The results of the review showed that metal and metal oxide loaded silica catalysts performed excellently and provided high selectivity of KA oil and cyclohexane conversion. The use of peroxides is not feasible due to their high price compared to air and oxygen. Gold nanoparticles supported on silica performed with high selectivity and good conversion. The use of hydrochloric acid as an additive was found very effective to enhance the photocatalytic oxidation of cyclohexane. Water on the catalyst surface enhanced the reactivity of the photocatalysts since it helps in the generation of hydroxyl radicals.
Collapse
Affiliation(s)
- Ahmed Abutaleb
- Chemical Engineering Department, College of Engineering , Jazan University , Gizan 45142 , Saudi Arabia
| | - Mohammad Ashraf Ali
- Chemical Engineering Department, College of Engineering , Jazan University , Gizan 45142 , Saudi Arabia
| |
Collapse
|
15
|
Lashanizadegan M, Gorgannejad Z, Sarkheil M. Cu(II) Schiff base complex on magnetic support: An efficient nano-catalyst for oxidation of olefins using H2O2 as an eco-friendly oxidant. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2020.108373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Shul'pina LS, Vinogradov MM, Kozlov YN, Nelyubina YV, Ikonnikov NS, Shul'pin GB. Copper complexes with 1,10-phenanthrolines as efficient catalysts for oxidation of alkanes by hydrogen peroxide. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119889] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
17
|
Oxovanadium(IV) complex supported on the surface of magnetite as a recyclable nanocatalyst for the preparation of 2-amino-4H-benzo[h]chromenes and selective oxidation of sulfides. REACTION KINETICS MECHANISMS AND CATALYSIS 2020. [DOI: 10.1007/s11144-020-01749-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Hong Y, Peng J, Sun Z, Yu Z, Wang A, Wang Y, Liu YY, Xu F, Sun LX. Transition Metal Oxodiperoxo Complex Modified Metal-Organic Frameworks as Catalysts for the Selective Oxidation of Cyclohexane. MATERIALS 2020; 13:ma13040829. [PMID: 32059505 PMCID: PMC7078608 DOI: 10.3390/ma13040829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/02/2020] [Accepted: 02/10/2020] [Indexed: 11/17/2022]
Abstract
In this work, a series of modified metal-organic frameworks (MOFs) have been prepared by pre- and post-treatment with transition metal oxodiperoxo complexes (MoO(O2)2, WO(O2)2, and KVO(O2)2). The obtained materials are characterized by XRD, FTIR, SEM, TEM, inductively coupled plasma atomic emission spectrometry (ICP-AES), and X-ray photoelectron spectroscopy (XPS), as well as by N2 adsorption/desorption measurement. The characterization results show that transition metal oxodiperoxo complexes are uniformly incorporated into the MOF materials without changing the basic structures. The performance of cyclohexane oxidation on metal oxodiperoxo complex modified MOFs are evaluated. UiO-67-KVO(O2)2 shows the best performance for cyclohexane oxidation, with 78% selectivity to KA oil (KA oil refers to a cyclohexanol and cyclohexanone mixture) at 9.4% conversion. The KA selectivity is found to depend on reaction time, while hot-filtration experiments indicates that the catalytic process is heterogeneous with no leaching of metal species.
Collapse
Affiliation(s)
- Yuechao Hong
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; (Y.H.); (J.P.); (Z.S.); (Z.Y.); (A.W.); (Y.W.)
| | - Jie Peng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; (Y.H.); (J.P.); (Z.S.); (Z.Y.); (A.W.); (Y.W.)
| | - Zhichao Sun
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; (Y.H.); (J.P.); (Z.S.); (Z.Y.); (A.W.); (Y.W.)
| | - Zhiquan Yu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; (Y.H.); (J.P.); (Z.S.); (Z.Y.); (A.W.); (Y.W.)
| | - Anjie Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; (Y.H.); (J.P.); (Z.S.); (Z.Y.); (A.W.); (Y.W.)
| | - Yao Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; (Y.H.); (J.P.); (Z.S.); (Z.Y.); (A.W.); (Y.W.)
| | - Ying-Ya Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; (Y.H.); (J.P.); (Z.S.); (Z.Y.); (A.W.); (Y.W.)
- Correspondence:
| | - Fen Xu
- Guangxi Key Laboratory of Information Materials and Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, School of Material Science & Engineering, Guilin University of Electronic Technology, Guilin 541004, China; (F.X.); (L.-X.S.)
| | - Li-Xian Sun
- Guangxi Key Laboratory of Information Materials and Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, School of Material Science & Engineering, Guilin University of Electronic Technology, Guilin 541004, China; (F.X.); (L.-X.S.)
| |
Collapse
|
19
|
Vailati AF, Huelsmann RD, Martendal E, Bortoluzzi AJ, Xavier FR, Peralta RA. Multivariate analysis applied to oxidation of cyclohexane and benzyl alcohol promoted by mononuclear iron and copper complexes. NEW J CHEM 2020. [DOI: 10.1039/c9nj05534g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The iron complex converted higher amounts of substrates while the copper complex presented higher selectivity toward selected products.
Collapse
Affiliation(s)
- Andrei F. Vailati
- Departamento de Química
- Universidade Federal de Santa Catarina
- Florianópolis – SC
- Brazil
| | - Ricardo D. Huelsmann
- Departamento de Química
- Universidade Federal de Santa Catarina
- Florianópolis – SC
- Brazil
| | - Edmar Martendal
- Departamento de Química
- Universidade do Estado de Santa Catarina
- Joinville – SC
- Brazil
| | | | - Fernando R. Xavier
- Departamento de Química
- Universidade do Estado de Santa Catarina
- Joinville – SC
- Brazil
| | - Rosely A. Peralta
- Departamento de Química
- Universidade Federal de Santa Catarina
- Florianópolis – SC
- Brazil
| |
Collapse
|
20
|
Sustainability in Catalytic Cyclohexane Oxidation: The Contribution of Porous Support Materials. Catalysts 2019. [DOI: 10.3390/catal10010002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The development of green and sustainable protocols for synthetic routes is a growing area of research in chemistry worldwide. The development of sustainable processes and products through innovative catalytic materials and technologies, that allow a better use of resources, is undoubtedly a very important issue facing research chemists today. Environmentally and economically advanced catalytic processes for selective alkane oxidations reactions, as is the case of cyclohexane oxidation, are now focused on catalysts’ stability and their reuse, intending to overcome the drawbacks posed by current homogeneous systems. The aim of this short review is to highlight recent contributions in heterogeneous catalysis regarding porous support materials to be applied to cyclohexane oxidation reaction. Different classes of porous materials are covered, from carbon nanomaterials to zeolites, mesoporous silicas, and metal organic frameworks. The role performed by the materials to be used as supports towards an enhancement of the activity/selectivity of the catalytic materials and the ability of recycling and reuse in consecutive catalytic cycles is highlighted.
Collapse
|