1
|
Al-Fatesh AS, Ibrahim AA, Fakeeha AH, Osman AI, Alanazi YM, Almubaddel FS, Abasaeed AE. Ni-Based Molecular Sieves Nanomaterials for Dry Methane Reforming: Role of Porous Structure and Active Sites Distribution on Hydrogen Production. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1320. [PMID: 39120425 PMCID: PMC11313978 DOI: 10.3390/nano14151320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/27/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
Global warming, driven by greenhouse gases like CH4 and CO2, necessitates efficient catalytic conversion to syngas. Herein, Ni containing different molecular sieve nanomaterials are investigated for dry reforming of methane (DRM). The reduced catalysts are characterized by surface area porosity, X-ray diffraction, Raman infrared spectroscopy, CO2 temperature-programmed desorption techniques, and transmission electron microscopy. The active sites over each molecular sieve remain stable under oxidizing gas CO2 during DRM. The reduced 5Ni/CBV10A catalyst, characterized by the lowest silica-alumina ratio, smallest surface area and pore volume, and narrow 8-ring connecting channels, generated the maximum number of active sites on its outer surface. In contrast, the reduced-5Ni/CBV3024E catalyst, with the highest silica-alumina ratio, more than double the surface area and pore volume, 12-ring sinusoidal porous channels, and smallest Ni crystallite, produced the highest H2 output (44%) after 300 min of operation at 700 °C, with a CH4:CO2 = 1:1, P = 1 atom, gas hour space velocity (GHSV) = 42 L gcat-1 h-1. This performance was achieved despite having 25% fewer initial active sites, suggesting that a larger fraction of these sites is stabilized within the pore channels, leading to sustained catalytic activity. Using central composite design and response surface methodology, we successfully optimized the process conditions for the 5Ni/CBV3024E catalyst. The optimized conditions yielded a desirable H2 to CO ratio of 1.00, with a H2 yield of 91.92% and a CO yield of 89.16%, indicating high efficiency in gas production. The experimental results closely aligned with the predicted values, demonstrating the effectiveness of the optimization approach.
Collapse
Affiliation(s)
- Ahmed S. Al-Fatesh
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia; (A.S.A.-F.); (A.A.I.); (A.H.F.); (Y.M.A.); (A.E.A.)
| | - Ahmed A. Ibrahim
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia; (A.S.A.-F.); (A.A.I.); (A.H.F.); (Y.M.A.); (A.E.A.)
| | - Anis H. Fakeeha
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia; (A.S.A.-F.); (A.A.I.); (A.H.F.); (Y.M.A.); (A.E.A.)
| | - Ahmed I. Osman
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast BT9 5AG, Northern Ireland, UK
| | - Yousef M. Alanazi
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia; (A.S.A.-F.); (A.A.I.); (A.H.F.); (Y.M.A.); (A.E.A.)
| | - Fahad Saleh Almubaddel
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia; (A.S.A.-F.); (A.A.I.); (A.H.F.); (Y.M.A.); (A.E.A.)
| | - Ahmed E. Abasaeed
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia; (A.S.A.-F.); (A.A.I.); (A.H.F.); (Y.M.A.); (A.E.A.)
| |
Collapse
|
2
|
Gao X, Cai P, Wang Z, Lv X, Kawi S. Surface Acidity/Basicity and Oxygen Defects of Metal Oxide: Impacts on Catalytic Performances of CO2 Reforming and Hydrogenation Reactions. Top Catal 2022. [DOI: 10.1007/s11244-022-01708-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Ni-CeO2/SBA-15 Catalyst Prepared by Glycine-Assisted Impregnation Method for Low-Temperature Dry Reforming of Methane. CRYSTALS 2022. [DOI: 10.3390/cryst12050713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Developing low-temperature nickel-based catalysts with good resistance to coking and sintering for dry reforming of methane (DRM) is of great significance. In this work, Ni (5 wt%) and CeO2 (5 wt%) were supported on SBA-15 porous material by glycine-assisted impregnation method to obtain Ni-CeO2/SBA-15-G catalyst. XRD and TEM results showed that the addition of glycine can effectively promote the dispersion of NiO and CeO2 in the pores of SBA-15. H2-TPR and XPS results confirmed the formation of stronger metal-support interaction. In addition, after the addition of glycine, the NixCe1−xOy solid solution content was increased significantly, meanwhile, the Ce3+ concentration was increased from 31% to 49%, accompanied by more oxygen vacancies and generation of active oxygen species. For the above reasons, Ni-CeO2/SBA-15-G had better catalytic performance in the low-temperature DRM test (20 h, 600 °C) with high GHSV (600,000 mL/gcat/h), its CH4 conversion after reaction of 20 h was 2 times that of Ni-CeO2/SBA-15-C catalyst prepared by a conventional impregnation method. TGA-DTA test also proved that Ni-CeO2/SBA-15-G almost completely eliminated carbon deposition. The above advantages of the Ni-CeO2/SBA-15-G catalyst may have originated from the complexation of glycine with metal cations and can prevent them from gathering.
Collapse
|
4
|
Al-Fatesh AS, Patel R, Srivastava VK, Ibrahim AA, Naeem MA, Fakeeha AH, Abasaeed AE, Alquraini AA, Kumar R. Barium-Promoted Yttria-Zirconia-Supported Ni Catalyst for Hydrogen Production via the Dry Reforming of Methane: Role of Barium in the Phase Stabilization of Cubic ZrO 2. ACS OMEGA 2022; 7:16468-16483. [PMID: 35601323 PMCID: PMC9118375 DOI: 10.1021/acsomega.2c00471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Developing cost-effective nonprecious active metal-based catalysts for syngas (H2/CO) production via the dry reforming of methane (DRM) for industrial applications has remained a challenge. Herein, we utilized a facile and scalable mechanochemical method to develop Ba-promoted (1-5 wt %) zirconia and yttria-zirconia-supported Ni-based DRM catalysts. BET surface area and porosity measurements, infrared, ultraviolet-visible, and Raman spectroscopy, transmission electron microscopy, and temperature-programmed cyclic (reduction-oxidation-reduction) experiments were performed to characterize and elucidate the catalytic performance of the synthesized materials. Among different catalysts tested, the inferior catalytic performance of 5Ni/Zr was attributed to the unstable monoclinic ZrO2 support and weakly interacting NiO species whereas the 5Ni/YZr system performed better because of the stable cubic ZrO2 phase and stronger metal-support interaction. It is established that the addition of Ba to the catalysts improves the oxygen-endowing capacity and stabilization of the cubic ZrO2 and BaZrO3 phases. Among the Ba-promoted catalysts, owing to the optimal active metal particle size and excess ionic CO3 2- species, the 5Ni4Ba/YZr catalyst demonstrated a high, stable H2 yield (i.e., 79% with a 0.94 H2/CO ratio) for up to 7 h of time on stream. The 5Ni4Ba/YZr catalyst had the highest H2 formation rate, 1.14 mol g-1 h-1 and lowest apparent activation energy, 20.07 kJ/mol, among all zirconia-supported Ni catalyst systems.
Collapse
Affiliation(s)
- Ahmed Sadeq Al-Fatesh
- Chemical Engineering
Department, College of Engineering, King
Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Rutu Patel
- Department of Chemistry, Sankalchand Patel
University, Visnagar, Gujarat, India 384315
| | | | - Ahmed Aidid Ibrahim
- Chemical Engineering
Department, College of Engineering, King
Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Muhammad Awais Naeem
- ETH Zürich, Department of Mechanical and Process Engineering, CH 8092 Zürich, Switzerland
| | - Anis Hamza Fakeeha
- Chemical Engineering
Department, College of Engineering, King
Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Ahmed Elhag Abasaeed
- Chemical Engineering
Department, College of Engineering, King
Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Abdullah Ali Alquraini
- Chemical Engineering
Department, College of Engineering, King
Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Rawesh Kumar
- Department of Chemistry, Indus
University, Ahmedabad, Gujarat, India 382115
| |
Collapse
|
5
|
Zhang Z, Shen C, Sun K, Liu CJ. Improvement in the activity of Ni/In2O3 with the addition of ZrO2 for CO2 hydrogenation to methanol. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2021.106386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
6
|
The Effect of Preparation Method of Ni-Supported SiO2 Catalysts for Carbon Dioxide Reforming of Methane. Catalysts 2021. [DOI: 10.3390/catal11101221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Reforming methane to produce syngas is a subject that generates considerable interest. The process requires catalysts that possess high-performance active sites to activate stable C–H bonds. Herein, we report a facile synthetic strategy to prepare Ni-based catalysts by complexation–impregnation (Ni-G/SiO2-C) and precipitation–impregnation (Ni-G/SiO2-P) methods using glycine as a complexing agent. The particle size of Ni in both types of catalysts is decreased by adding glycine in the preparation process. Nevertheless, the preparation methods and amount of glycine play a significant role in the particle size and distribution of Ni over the Ni-based catalysts. The smaller particle size and narrower distribution of Ni were obtained in the Ni-G/SiO2-P catalyst. The catalysts were comparatively tested for carbon-dioxide reforming of methane (CDR). Ni-G/SiO2-P showed better CDR performance than Ni-G/SiO2-C and Ni/SiO2 and increased stability because of the smaller particle size and narrower distribution of Ni. Moreover, a high-performance Ni-based catalyst was prepared by optimizing the amount of glycine added. An unobservable deactivation was obtained over Ni-G-2/SiO2-P and Ni-G-3/SiO2-P for CDR during TOS = 20 h. Thus, a new promising method is described for the preparation of Ni-based catalysts for CDR.
Collapse
|
7
|
Highly active and coke resistant Ni/CeZrO2 catalyst prepared by cold plasma decomposition for CO2 reforming of methane. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101647] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
The structural effect of Ni/ZrO2 on the formation and the reactivity of the carbon formed from methane decomposition. CHEMICAL ENGINEERING SCIENCE: X 2021. [DOI: 10.1016/j.cesx.2021.100104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
9
|
A highly active Ni catalyst supported on Mg-substituted LaAlO3 for carbon dioxide reforming of methane. Catal Today 2021. [DOI: 10.1016/j.cattod.2019.12.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Hydrogen Yield from CO2 Reforming of Methane: Impact of La2O3 Doping on Supported Ni Catalysts. ENERGIES 2021. [DOI: 10.3390/en14092412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Development of a transition metal based catalyst aiming at concomitant high activity and stability attributed to distinguished catalytic characteristics is considered as the bottleneck for dry reforming of methane (DRM). This work highlights the role of modifying zirconia (ZrO2) and alumina (Al2O3) supported nickel based catalysts using lanthanum oxide (La2O3) varying from 0 to 20 wt% during dry reforming of methane. The mesoporous catalysts with improved BET surface areas, improved dispersion, relatively lower reduction temperatures and enhanced surface basicity are identified after La2O3 doping. These factors have influenced the catalytic activity and higher hydrogen yields are found for La2O3 modified catalysts as compared to base catalysts (5 wt% Ni-ZrO2 and 5 wt% Ni-Al2O3). Post-reaction characterizations such as TGA have showed less coke formation over La2O3 modified samples. Raman spectra indicates decreased graphitization for La2O3 catalysts. The 5Ni-10La2O3-ZrO2 catalyst produced 80% hydrogen yields, 25% more than that of 5Ni-ZrO2. 5Ni-15La2O3-Al2O3 gave 84% hydrogen yields, 8% higher than that of 5Ni-Al2O3. Higher CO2 activity improved the surface carbon oxidation rate. From the study, the extent of La2O3 loading is dependent on the type of oxide support.
Collapse
|
11
|
Zhang F, Sun P. CO
2
methanation on Na‐promoted Ni/ZrO
2
catalysts: Experimental characterization and kinetic studies. INT J CHEM KINET 2021. [DOI: 10.1002/kin.21493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Fanying Zhang
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education School of Chemical Engineering Zhengzhou University Zhengzhou China
| | - Peiqin Sun
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education School of Chemical Engineering Zhengzhou University Zhengzhou China
| |
Collapse
|
12
|
Recent Developments in Dielectric Barrier Discharge Plasma-Assisted Catalytic Dry Reforming of Methane over Ni-Based Catalysts. Catalysts 2021. [DOI: 10.3390/catal11040455] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The greenhouse effect is leading to global warming and destruction of the ecological environment. The conversion of carbon dioxide and methane greenhouse gases into valuable substances has attracted scientists’ attentions. Dry reforming of methane (DRM) alleviates environmental problems and converts CO2 and CH4 into valuable chemical substances; however, due to the high energy input to break the strong chemical bonds in CO2 and CH4, non-thermal plasma (NTP) catalyzed DRM has been promising in activating CO2 at ambient conditions, thus greatly lowering the energy input; moreover, the synergistic effect of the catalyst and plasma improves the reaction efficiency. In this review, the recent developments of catalytic DRM in a dielectric barrier discharge (DBD) plasma reactor on Ni-based catalysts are summarized, including the concept, characteristics, generation, and types of NTP used for catalytic DRM and corresponding mechanisms, the synergy and performance of Ni-based catalysts with DBD plasma, the design of DBD reactor and process parameter optimization, and finally current challenges and future prospects are provided.
Collapse
|
13
|
Wu X, Xu L, Chen M, Lv C, Wen X, Cui Y, Wu CE, Yang B, Miao Z, Hu X. Recent Progresses in the Design and Fabrication of Highly Efficient Ni-Based Catalysts With Advanced Catalytic Activity and Enhanced Anti-coke Performance Toward CO 2 Reforming of Methane. Front Chem 2020; 8:581923. [PMID: 33195071 PMCID: PMC7543533 DOI: 10.3389/fchem.2020.581923] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/13/2020] [Indexed: 11/13/2022] Open
Abstract
CO2 reforming of methane (CRM) can effectively convert two greenhouse gases (CO2 and CH4) into syngas (CO + H2). This process can achieve the efficient resource utilization of CO2 and CH4 and reduce greenhouse gases. Therefore, CRM has been considered as a significantly promising route to solve environmental problems caused by greenhouse effect. Ni-based catalysts have been widely investigated in CRM reactions due to their various advantages, such as high catalytic activity, low price, and abundant reserves. However, Ni-based catalysts usually suffer from rapid deactivation because of thermal sintering of metallic Ni active sites and surface coke deposition, which restricted the industrialization of Ni-based catalysts toward the CRM process. In order to address these challenges, scientists all around the world have devoted great efforts to investigating various influencing factors, such as the option of appropriate supports and promoters and the construction of strong metal-support interaction. Therefore, we carefully summarized recent development in the design and preparation of Ni-based catalysts with advanced catalytic activity and enhanced anti-coke performance toward CRM reactions in this review. Specifically, recent progresses of Ni-based catalysts with different supports, additives, preparation methods, and so on, have been summarized in detail. Furthermore, recent development of reaction mechanism studies over Ni-based catalysts was also covered by this review. Finally, it is prospected that the Ni-based catalyst supported by an ordered mesoporous framework and the combined reforming of methane will become the future development trend.
Collapse
Affiliation(s)
- Xianyun Wu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, China
| | - Leilei Xu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, China
| | - Mindong Chen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, China
| | - Chufei Lv
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, China
| | - Xueying Wen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, China
| | - Yan Cui
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, China
| | - Cai-E Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Bo Yang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, China
| | - Zhichao Miao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, China
| | - Xun Hu
- School of Material Science and Engineering, University of Jinan, Jinan, China
| |
Collapse
|
14
|
Chawdhury P, Bhargavi KVSS, Selvaraj M, Subrahmanyam C. Promising catalytic activity by non-thermal plasma synthesized SBA-15-supported metal catalysts in one-step plasma-catalytic methane conversion to value-added fuels. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00900h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Plasma-reduced metal nanoparticles encapsulated in an ordered mesoporous silica catalyst (SBA-15) effectively convert methane to liquid oxygenates in assistance of DBD-discharge.
Collapse
Affiliation(s)
- Piu Chawdhury
- Department of Chemistry
- Indian Institute of Technology Hyderabad
- India
| | | | - M. Selvaraj
- Department of Chemistry
- Faculty of Science
- King Khalid University
- Abha
- Saudi Arabia
| | - Ch. Subrahmanyam
- Department of Chemistry
- Indian Institute of Technology Hyderabad
- India
| |
Collapse
|