1
|
Wang X, Zhao J, Eliasson H, Erni R, Ziarati A, Mckeown Walker S, Bürgi T. Very Low Temperature CO Oxidation over Atomically Precise Au 25 Nanoclusters on MnO 2. J Am Chem Soc 2023; 145:27273-27281. [PMID: 38065568 PMCID: PMC10739995 DOI: 10.1021/jacs.3c06372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Indexed: 12/21/2023]
Abstract
Atomically precise Au25 nanoclusters have garnered significant interest in the field of heterogeneous catalysis due to their remarkable activity and selectivity. However, for the extensively studied reaction of low-temperature CO oxidation, their performance has not been competitive compared to other known gold nanocatalysts. To address this, we deposited Au25(SR)18 (R = CH2CH2Ph) nanoclusters onto a manganese oxide support (Au25/MnO2), resulting in a very stable and highly active catalyst. By optimizing the pretreatment temperature, we were able to significantly enhance the performance of the Au25/MnO2 catalyst, which outperformed most other gold catalysts. Impressively, 100% conversion of CO was achieved at temperatures as low as -50 °C, with 50% conversion being reached below -70 °C. Furthermore, the existence of ligands could also influence the negative apparent activation energy observed at intermediate temperatures. Analysis using X-ray photoelectron spectroscopy (XPS), scanning transmission electron microscopy (STEM), and X-ray diffraction (XRD) techniques indicated that the Au25 nanoclusters remained stable on the catalyst surface even after pretreatment at high temperatures. In-situ modulation excitation spectroscopy (MES) spectra also confirmed that the Au cluster was the active site for CO oxidation, highlighting the potential of atomically precise Au25 nanoclusters as primary active sites at very low temperatures.
Collapse
Affiliation(s)
- Xianwei Wang
- Department
of Physical Chemistry, University of Geneva, 4, 1211 Geneva, Switzerland
| | - Jiangtao Zhao
- Department
of Physical Chemistry, University of Geneva, 4, 1211 Geneva, Switzerland
| | - Henrik Eliasson
- Electron
Microscopy Center, Empa, Swiss Federal Laboratories
for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Rolf Erni
- Electron
Microscopy Center, Empa, Swiss Federal Laboratories
for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Abolfazl Ziarati
- Department
of Physical Chemistry, University of Geneva, 4, 1211 Geneva, Switzerland
| | - Siobhan Mckeown Walker
- Department
of Quantum Matter Physics, University of
Geneva, 1211 Geneva 4, Switzerland
- Laboratory
of Advanced Technology, University of Geneva, 4, 1211 Geneva, Switzerland
| | - Thomas Bürgi
- Department
of Physical Chemistry, University of Geneva, 4, 1211 Geneva, Switzerland
| |
Collapse
|
2
|
Barrabés N, Ostolaza J, Reindl S, Mähr M, Schrenk F, Drexler H, Rameshan C, Olszewski W, Rupprechter G. Doped metal clusters as bimetallic AuCo nanocatalysts: insights into structural dynamics and correlation with catalytic activity by in situ spectroscopy. Faraday Discuss 2023; 242:94-105. [PMID: 36330869 PMCID: PMC9890489 DOI: 10.1039/d2fd00120a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023]
Abstract
Co-doped Au25 nanoclusters with different numbers of doping atoms were synthesized and supported on CeO2. The catalytic properties were studied in the CO oxidation reaction. In all cases, an enhancement in catalytic activity was observed compared to the pure Au25 nanocluster catalyst. Interestingly, a different catalytic performance was obtained depending on the number of Co atoms within the cluster. This was related to the mobility of atoms within the cluster's structure under pretreatment and reaction conditions, resulting in active CoAu nanoalloy sites. The evolution of the doped Au clusters into nanoalloys with well-distributed Co atoms within the Au cluster structure was revealed by combined XAFS, DRIFTS, and XPS studies. Overall, these studies contribute to a better understanding of the dynamics of doped nanoclusters on supports upon pretreatment and reaction, which is key information for the future development and application of bimetallic nanocluster (nanoalloy) catalysts.
Collapse
Affiliation(s)
- Noelia Barrabés
- Institute of Materials Chemistry, Technische Universität Wien, Getreidemarkt 9/165, 1060 Vienna, Austria.
| | - Jon Ostolaza
- Institute of Materials Chemistry, Technische Universität Wien, Getreidemarkt 9/165, 1060 Vienna, Austria.
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| | - Sarah Reindl
- Institute of Materials Chemistry, Technische Universität Wien, Getreidemarkt 9/165, 1060 Vienna, Austria.
| | - Martin Mähr
- Institute of Materials Chemistry, Technische Universität Wien, Getreidemarkt 9/165, 1060 Vienna, Austria.
| | - Florian Schrenk
- Institute of Materials Chemistry, Technische Universität Wien, Getreidemarkt 9/165, 1060 Vienna, Austria.
| | - Hedda Drexler
- Institute of Materials Chemistry, Technische Universität Wien, Getreidemarkt 9/165, 1060 Vienna, Austria.
| | - Christoph Rameshan
- Institute of Materials Chemistry, Technische Universität Wien, Getreidemarkt 9/165, 1060 Vienna, Austria.
| | - Wojciech Olszewski
- Faculty of Physics, University of Bialystok, ul. K. Ciolkowskiego 1L, 15-245 Bialystok, Poland
| | - Günther Rupprechter
- Institute of Materials Chemistry, Technische Universität Wien, Getreidemarkt 9/165, 1060 Vienna, Austria.
| |
Collapse
|
3
|
Truttmann V, Drexler H, Stöger‐Pollach M, Kawawaki T, Negishi Y, Barrabés N, Rupprechter G. CeO 2 Supported Gold Nanocluster Catalysts for CO Oxidation: Surface Evolution Influenced by the Ligand Shell. ChemCatChem 2022; 14:e202200322. [PMID: 36035519 PMCID: PMC9400996 DOI: 10.1002/cctc.202200322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/07/2022] [Indexed: 11/15/2022]
Abstract
Monolayer protected Au nanocluster catalysts are known to undergo structural changes during catalytic reactions, including dissociation and migration of ligands onto the support, which strongly affects their activity and stability. To better understand how the nature of ligands influences the catalytic activity of such catalysts, three types of ceria supported Au nanoclusters with different kinds of ligands (thiolates, phosphines and a mixture thereof) have been studied, employing CO oxidation as model reaction. The thiolate-protected Au25/CeO2 showed significantly higher CO conversion after activation at 250 °C than the cluster catalysts possessing phosphine ligands. Temperature programmed oxidation and in situ infrared spectroscopy revealed that while the phosphine ligands seemed to decompose and free Au surface was exposed, temperatures higher than 250 °C are required to efficiently remove them from the whole catalyst system. Moreover, the presence of residues on the support seemed to have much greater influence on the reactivity than the gold particle size.
Collapse
Affiliation(s)
- Vera Truttmann
- Institute of Materials ChemistryTU WienGetreidemarkt 9/1651060ViennaAustria
| | - Hedda Drexler
- Institute of Materials ChemistryTU WienGetreidemarkt 9/1651060ViennaAustria
| | - Michael Stöger‐Pollach
- University Service Center for Transmission Electron Microscopy (USTEM)TU WienWiedner Hauptstraße 8–101040ViennaAustria
| | - Tokuhisa Kawawaki
- Department of Applied ChemistryFaculty of ScienceTokyo University of ScienceKagurazaka, Shinjuku-kuTokyo 162-8601Japan
| | - Yuichi Negishi
- Department of Applied ChemistryFaculty of ScienceTokyo University of ScienceKagurazaka, Shinjuku-kuTokyo 162-8601Japan
| | - Noelia Barrabés
- Institute of Materials ChemistryTU WienGetreidemarkt 9/1651060ViennaAustria
| | | |
Collapse
|
4
|
López-Hernández I, Truttmann V, Barrabés N, Rupprechter G, Rey F, Mengual J, Palomares A. Gold nanoclusters supported on different materials as catalysts for the selective alkyne semihydrogenation. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
5
|
López-Hernández I, Truttmann V, Garcia C, Lopes C, Rameshan C, Stöger-Pollach M, Barrabés N, Rupprechter G, Rey F, Palomares A. AgAu nanoclusters supported on zeolites: Structural dynamics during CO oxidation. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.04.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
6
|
Kawawaki T, Shimizu N, Mitomi Y, Yazaki D, Hossain S, Negishi Y. Supported, ∼1-nm-Sized Platinum Clusters: Controlled Preparation and Enhanced Catalytic Activity. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Tokuhisa Kawawaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku–ku, Tokyo 162–8601, Japan
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku–ku, Tokyo 162–8601, Japan
| | - Nobuyuki Shimizu
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku–ku, Tokyo 162–8601, Japan
| | - Yusuke Mitomi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku–ku, Tokyo 162–8601, Japan
| | - Daichi Yazaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku–ku, Tokyo 162–8601, Japan
| | - Sakiat Hossain
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku–ku, Tokyo 162–8601, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku–ku, Tokyo 162–8601, Japan
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku–ku, Tokyo 162–8601, Japan
| |
Collapse
|
7
|
Kawawaki T, Kataoka Y, Hirata M, Iwamatsu Y, Hossain S, Negishi Y. Toward the creation of high-performance heterogeneous catalysts by controlled ligand desorption from atomically precise metal nanoclusters. NANOSCALE HORIZONS 2021; 6:409-448. [PMID: 33903861 DOI: 10.1039/d1nh00046b] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ligand-protected metal nanoclusters controlled by atomic accuracy (i. e. atomically precise metal NCs) have recently attracted considerable attention as active sites in heterogeneous catalysts. Using these atomically precise metal NCs, it becomes possible to create novel heterogeneous catalysts based on a size-specific electronic/geometrical structure of metal NCs and understand the mechanism of the catalytic reaction easily. However, to create high-performance heterogeneous catalysts using atomically precise metal NCs, it is often necessary to remove the ligands from the metal NCs. This review summarizes previous studies on the creation of heterogeneous catalysts using atomically precise metal NCs while focusing on the calcination as a ligand-elimination method. Through this summary, we intend to share state-of-art techniques and knowledge on (1) experimental conditions suitable for creating high-performance heterogeneous catalysts (e.g., support type, metal NC type, ligand type, and calcination temperature), (2) the mechanism of calcination, and (3) the mechanism of catalytic reaction over the created heterogeneous catalyst. We also discuss (4) issues that should be addressed in the future toward the creation of high-performance heterogeneous catalysts using atomically precise metal NCs. The knowledge and issues described in this review are expected to lead to clear design guidelines for the creation of novel heterogeneous catalysts.
Collapse
Affiliation(s)
- Tokuhisa Kawawaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan. and Photocatalysis International Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan and Research Institute for Science and Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yuki Kataoka
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Momoko Hirata
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Yuki Iwamatsu
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Sakiat Hossain
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan. and Photocatalysis International Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan and Research Institute for Science and Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
8
|
Pollitt S, Truttmann V, Haunold T, Garcia C, Olszewski W, Llorca J, Barrabés N, Rupprechter G. The Dynamic Structure of Au 38(SR) 24 Nanoclusters Supported on CeO 2 upon Pretreatment and CO Oxidation. ACS Catal 2020; 10:6144-6148. [PMID: 32551181 PMCID: PMC7295362 DOI: 10.1021/acscatal.0c01621] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/08/2020] [Indexed: 11/28/2022]
Abstract
Atomically precise thiolate protected Au nanoclusters Au38(SC2H4Ph)24 on CeO2 were used for in-situ (operando) extended X-ray absorption fine structure/diffuse reflectance infrared fourier transform spectroscopy and ex situ scanning transmission electron microscopy-high-angle annular dark-field imaging/X-ray photoelectron spectroscopy studies monitoring cluster structure changes induced by activation (ligand removal) and CO oxidation. Oxidative pretreatment at 150 °C "collapsed" the clusters' ligand shell, oxidizing the hydrocarbon backbone, but the S remaining on Au acted as poison. Oxidation at 250 °C produced bare Au surfaces by removing S which migrated to the support (forming Au+-S), leading to highest activity. During reaction, structural changes occurred via CO-induced Au and O-induced S migration to the support. The results reveal the dynamics of nanocluster catalysts and the underlying cluster chemistry.
Collapse
Affiliation(s)
- Stephan Pollitt
- Institute
of Materials Chemistry, TU Wien, Getreidemarkt 9/BC/01, 1060 Vienna Austria
| | - Vera Truttmann
- Institute
of Materials Chemistry, TU Wien, Getreidemarkt 9/BC/01, 1060 Vienna Austria
| | - Thomas Haunold
- Institute
of Materials Chemistry, TU Wien, Getreidemarkt 9/BC/01, 1060 Vienna Austria
| | - Clara Garcia
- Institute
of Materials Chemistry, TU Wien, Getreidemarkt 9/BC/01, 1060 Vienna Austria
| | - Wojciech Olszewski
- ALBA
Synchrotron Light Facility, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallés, Barcelona, Spain
- Faculty
of Physics, University of Bialystok, 1L K. Ciolkowskiego Str., 15–245 Bialystok, Poland
| | - Jordi Llorca
- Institute
of Energy Technologies, Department of Chemical Engineering and Barcelona
Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya EEBE, Eduard Maristany 16, 08019 Barcelona, Spain
| | - Noelia Barrabés
- Institute
of Materials Chemistry, TU Wien, Getreidemarkt 9/BC/01, 1060 Vienna Austria
| | - Günther Rupprechter
- Institute
of Materials Chemistry, TU Wien, Getreidemarkt 9/BC/01, 1060 Vienna Austria
| |
Collapse
|
9
|
Veenstra AP, Monzel L, Baksi A, Czekner J, Lebedkin S, Schneider EK, Pradeep T, Unterreiner AN, Kappes MM. Ultrafast Intersystem Crossing in Isolated Ag 29(BDT) 123- Probed by Time-Resolved Pump-Probe Photoelectron Spectroscopy. J Phys Chem Lett 2020; 11:2675-2681. [PMID: 32167769 DOI: 10.1021/acs.jpclett.0c00482] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The photophysics of the isolated trianion Ag29(BDT)123- (BDT = benzenedithiolate), a ligand-protected cluster comprising BDT-based ligands, terminating a shell of silver thiolates and a core of silver atoms, was studied in the gas phase by femtosecond time-resolved, pump-probe photoelectron spectroscopy. UV excitation at 490 nm populates one or more singlet excited states with significant charge transfer (CT) character in which electron density is shifted from shell to core. These CT states relax on an average time scale of several hundred femtoseconds by charge recombination to yield either the vibrationally excited singlet ground state (internal conversion) or a long-lived triplet (intersystem crossing). Our study is the first ultrafast spectroscopic probe of a ligand-protected coinage metal cluster in isolation. In the future, it will be interesting to study how cluster size, overall charge state, or heteroatom doping can be used to tune the corresponding relaxation dynamics in the absence of solvent.
Collapse
Affiliation(s)
- Aron P Veenstra
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
| | - Laurenz Monzel
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
| | - Ananya Baksi
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Joseph Czekner
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
| | - Sergei Lebedkin
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Erik K Schneider
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
| | - Thalappil Pradeep
- DST Unit of Nanoscience and Thematic Unit of Excellence, Indian Institute of Technology Madras, 600036 Chennai, Tamil Nadu, India
| | | | - Manfred M Kappes
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Quantum Materials and Technology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
10
|
Sudheeshkumar V, Sulaiman KO, Scott RWJ. Activation of atom-precise clusters for catalysis. NANOSCALE ADVANCES 2020; 2:55-69. [PMID: 36133968 PMCID: PMC9417207 DOI: 10.1039/c9na00549h] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 11/06/2019] [Indexed: 05/07/2023]
Abstract
The use of atom-precise, ligand-protected metal clusters has exceptional promise towards the fabrication of model supported-nanoparticle heterogeneous catalysts which have controlled sizes and compositions. One major challenge in the field involves the ease at which metallic clusters sinter upon removal of protected ligands, thus destroying the structural integrity of the model system. This review focuses on methods used to activate atom-precise thiolate-stabilized clusters for heterogeneous catalysis, and strategies that can be used to mitigate sintering. Thermal activation is the most commonly employed approach to activate atom-precise metal clusters, though a variety of chemical and photochemical activation strategies have also been reported. Material chemistry methods that can mitigate sintering are also explored, which include overcoating of clusters with metal oxide supports fabricated by sol-gel chemistry or atomic layer deposition of thin oxide films or encapsulating clusters within porous supports. In addition to focusing on the preservation of the size and morphology of deprotected metal clusters, the fate of the removed ligands is also explored, because detached and/or oxidized ligands can also greatly influence the overall properties of the catalyst systems. We also show that modern characterization techniques such as X-ray absorption spectroscopy and high-resolution electron microscopy have the capacity to enable careful monitoring of particle sintering upon activation of metal clusters.
Collapse
Affiliation(s)
- V Sudheeshkumar
- Department of Chemistry, University of Saskatchewan 110 Science Place Saskatoon Saskatchewan S7N 5C9 Canada
| | - Kazeem O Sulaiman
- Department of Chemistry, University of Saskatchewan 110 Science Place Saskatoon Saskatchewan S7N 5C9 Canada
| | - Robert W J Scott
- Department of Chemistry, University of Saskatchewan 110 Science Place Saskatoon Saskatchewan S7N 5C9 Canada
| |
Collapse
|