1
|
Shekhar P, Datta Devulapalli VS, Reji R, Singh HD, Jose A, Singh P, Torris A, Vinod CP, Tokarz JA, Mahle JJ, Peterson GW, Borguet E, Vaidhyanathan R. COF-supported zirconium oxyhydroxide as a versatile heterogeneous catalyst for Knoevenagel condensation and nerve agent hydrolysis. iScience 2023; 26:108088. [PMID: 37942004 PMCID: PMC10628716 DOI: 10.1016/j.isci.2023.108088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/25/2023] [Accepted: 09/26/2023] [Indexed: 11/10/2023] Open
Abstract
A composite of catalytic Lewis acidic zirconium oxyhydroxides (8 wt %) and a covalent organic framework (COF) was synthesized. X-ray diffraction and infrared (IR) spectroscopy reveal that COF's structure is preserved after loading with zirconium oxyhydroxides. Electron microscopy confirms a homogeneous distribution of nano- to sub-micron-sized zirconium clusters in the COF. 3D X-ray tomography captures the micron-sized channels connecting the well-dispersed zirconium clusters on the COF. The crystalline ZrOx(OH)y@COF's nanostructure was model-optimized via simulated annealing methods. Using 0.8 mol % of the catalyst yielded a turnover number of 100-120 and a turnover frequency of 160-360 h-1 for Knoevenagel condensation in aqueous medium. Additionally, 2.2 mol % of catalyst catalyzes the hydrolysis of dimethyl nitrophenyl phosphate, a simulant of nerve agent Soman, with a conversion rate of 37% in 180 min. The hydrolytic detoxification of the live agent Soman is also achieved. Our study unveils COF-stabilized ZrOx(OH)y as a new class of zirconium-based Lewis + Bronsted-acid catalysts.
Collapse
Affiliation(s)
- Pragalbh Shekhar
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
- Centre for Energy Science, Indian Institute of Science Education and Research, Pune 411008, India
| | | | - Reshma Reji
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
- Centre for Energy Science, Indian Institute of Science Education and Research, Pune 411008, India
| | - Himan Dev Singh
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
- Centre for Energy Science, Indian Institute of Science Education and Research, Pune 411008, India
| | - Aleena Jose
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
- Centre for Energy Science, Indian Institute of Science Education and Research, Pune 411008, India
| | - Piyush Singh
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
- Centre for Energy Science, Indian Institute of Science Education and Research, Pune 411008, India
| | - Arun Torris
- CSIR-NCL, Polymer Science and Engineering (PSE), Pune 411008, India
| | | | - John A. Tokarz
- U.S. Army DEVCOM Chemical Biological Center, Aberdeen Proving Ground, MD 21010, USA
| | - John J. Mahle
- U.S. Army DEVCOM Chemical Biological Center, Aberdeen Proving Ground, MD 21010, USA
| | - Gregory W. Peterson
- U.S. Army DEVCOM Chemical Biological Center, Aberdeen Proving Ground, MD 21010, USA
| | - Eric Borguet
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA
| | - Ramanathan Vaidhyanathan
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
- Centre for Energy Science, Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
2
|
Saha E, Jungi H, Dabas S, Mathew A, Kuniyil R, Subramanian S, Mitra J. Amine-rich Nickel(II)-Xerogel as a Highly Active Bifunctional Metallo-organo Catalyst for Aqueous Knoevenagel Condensation and Solvent-free CO 2 Cycloaddition. Inorg Chem 2023; 62:14959-14970. [PMID: 37672483 DOI: 10.1021/acs.inorgchem.3c01669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Metallogels formed from supramolecular interactions of low-molecular-weight gelators (LMWGs) combine the qualities of heterogeneous catalysts and offer the advantages of multifunctionality owing to the facile installation of desired task-specific moieties on the surface and along the channels of the gels. We discuss the applications of a triazole-based Ni(II) gel-derived xerogel (NiXero) having a high density of Ni(II)-nodes and appended primary amines as a recyclable heterogeneous catalyst for Knoevenagel condensation of aldehyde and malononitrile in water and the solvent-free cycloaddition of CO2 to form a series of cyclic carbonates with near-quantitative conversion of the respective epoxides, with low catalyst loading (0.59 mol %), high catalyst stability, and recyclability. The structural advantages of NiXero, due to the concurrent presence of bifunctional Lewis acid-base sites on the channels, open Ni(II) nodes, Ntriazole, pendant -NH2 and its chemical stability, are conducive to the cooperative heterogeneous catalytic activity under mild conditions. This work emphasizes the effective amalgamation of metals with purpose-built ligand systems for the construction of metallogels and their utility as heterogeneous catalysts for desired organic transformations.
Collapse
Affiliation(s)
- Ekata Saha
- Inorganic Materials & Catalysis (IMC) Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters, CSIR-HRDC Campus, Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, India
| | - Hiren Jungi
- Inorganic Materials & Catalysis (IMC) Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters, CSIR-HRDC Campus, Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, India
| | - Shilpa Dabas
- Inorganic Materials & Catalysis (IMC) Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters, CSIR-HRDC Campus, Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, India
| | - Abra Mathew
- Department of Chemistry, Indian Institute of Technology Palakkad (IIT Palakkad), Palakkad 678623, Kerala, India
| | - Rositha Kuniyil
- Department of Chemistry, Indian Institute of Technology Palakkad (IIT Palakkad), Palakkad 678623, Kerala, India
| | - Saravanan Subramanian
- Inorganic Materials & Catalysis (IMC) Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters, CSIR-HRDC Campus, Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, India
| | - Joyee Mitra
- Inorganic Materials & Catalysis (IMC) Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters, CSIR-HRDC Campus, Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, India
| |
Collapse
|
3
|
Kumar S, Mohan B, Fu C, Gupta V, Ren P. Decoration and utilization of a special class of metal–organic frameworks containing the fluorine moiety. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
4
|
Aledavoud SP, Salehi Rozveh Z, Karimi M, Safarifard V. Post-Synthetic Defunctionalization of Ammonium-Functionalized Zr-Based Metal-Organic Framework MIP-202 for Knoevenagel Condensation Reaction. COMMENT INORG CHEM 2022. [DOI: 10.1080/02603594.2022.2121278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
| | - Zahra Salehi Rozveh
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Meghdad Karimi
- Department of Chemistry, Tarbiat Modares University, Tehran, Iran
| | - Vahid Safarifard
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| |
Collapse
|
5
|
Kumar S, Ma S, Mohan B, Li S, Ren P. Triazole-Based Cu(I) Cationic Metal-Organic Frameworks with Lewis Basic Pyridine Sites for Selective Detection of Ce 3+ Ions. Inorg Chem 2022; 61:14778-14786. [PMID: 36069102 DOI: 10.1021/acs.inorgchem.2c02215] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A highly symmetric bis-triazole-pyridine-based organic ligand, i.e., 3,5-di(4H-1,2,4-triazol-4-yl)pyridine (L), and Cu(II) salts were used to synthesize three cationic Cu(I) metal-organic frameworks (MOFs), namely, {[Cu(L)]·(NO3)·(H2O)}n (1), {[Cu(L)]·(BF4)·0.5H2O}n (2), and {[Cu1.25(L)]·1.25(ClO4)·H2O}n (3). All three MOFs have nonbonded anions situated inside the pore spaces. Both 1 and 2 have a two-dimensional network structure, while 3 has a three-dimensional structure. All three MOFs were characterized using Fourier transform infrared spectroscopy, elemental (C, H, and N) analysis, thermogravimetric analysis, and powder and single-crystal X-ray diffraction. Due to the presence of a Lewis basic pyridine moiety, these MOFs could serve as luminescent probes for the selective detection of Ce3+ ions with excellent efficiency (10-7 M). The synthesis of Cu(I)-based MOFs and their use to detect Ce3+ ions in water via a turn-on fluorescence process have rarely been reported. These MOFs are highly stable in water, are recyclable, and function efficiently at different pH values.
Collapse
Affiliation(s)
- Sandeep Kumar
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Shixuan Ma
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Brij Mohan
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Shuangshuang Li
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Peng Ren
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
6
|
Mannarsamy M, Prabusankar G. Highly Active Copper(I)-Chalcogenone Catalyzed Knoevenagel Condensation Reaction Using Various Aldehydes and Active Methylene Compounds. Catal Letters 2022. [DOI: 10.1007/s10562-021-03810-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Mannarsamy M, Nandeshwar M, Muduli G, Prabusankar G. Highly Active Cyclic Zinc(II) Thione Catalyst for C-C and C-N Bond Formation Reactions. Chem Asian J 2022; 17:e202200594. [PMID: 35880638 DOI: 10.1002/asia.202200594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/23/2022] [Indexed: 11/12/2022]
Abstract
The first discrete seven-membered cyclic zinc(II) complex catalyzed room temperature Knoevenagel condensation reactions, and the synthesis of perimidine derivatives has been reported under mild reaction conditions. The cyclic zinc(II) complex [( L) ZnBr 2 ] ( 1 ) was isolated from the reaction between 1-(2-hydroxyethyl)-3-isopropyl-benzimidazole-2-thione ( L ) and ZnBr 2 . Complex 1 was characterized by different analytic techniques such as FT-IR, CHNS, TGA, NMR, and SCXRD. The mononuclear zinc(II) complex 1 was utilized as a catalyst for Knoevenagel condensation reactions to isolate twenty different substituted methylene malononitriles with excellent yield. Besides, the zinc(II) thione complex 1 was utilized for the synthesis of 2,4-dihydroperimidine derivatives in a highly efficient manner. Catalyst 1 depicted wide substrate scopes. Overall, twenty different substituted methylene malononitriles and nine different perimidine derivatives were synthesized using catalyst 1 at room temperature. The present investigation features a mild and fast synthetic approach along with excellent functional group tolerance.
Collapse
Affiliation(s)
| | | | | | - Ganesan Prabusankar
- Indian Institute of Technology-Hyderabad, Chemistry, Kandi Medak Telangana India 502285, 502285, 502285, Hyderabad, INDIA
| |
Collapse
|
8
|
Kumar S, Liu S, Mohan B, Zhang M, Tao Z, Wan Z, You H, Sun F, Li M, Ren P. Fluorine-Containing Triazole-Decorated Silver(I)-Based Cationic Metal-Organic Framework for Separating Organic Dyes and Removing Oxoanions from Water. Inorg Chem 2021; 60:7070-7081. [PMID: 33884866 DOI: 10.1021/acs.inorgchem.0c03688] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Four new triazole-decorated silver(I)-based cationic metal-organic frameworks (MOFs), {[Ag(L1)](BF4)}n (1), {[Ag(L1)](NO3)}n (2), {[Ag(L2)](BF4)}n (3), and {[Ag(L2)](NO3)}n (4), have been synthesized using two newly designed ligands, 3-fluoro-5-(4H-1,2,4-triazol-4-yl)pyridine (L1) and 3-(4H-1,2,4-triazol-4-yl)-5-(trifluoromethyl)pyridine (L2). When the fluorine atom was changed to a trifluoromethyl group at the same position, tremendous enhancement in the MOF dimensionality was achieved [two-dimensional to three-dimensional (3D)]. However, changing the metal salt (used for the synthesis) had no effect. The higher electron-withdrawing tendency of the trifluoromethyl group in L2 aided in the formation of higher-dimensional MOFs with different properties compared with those of the fluoro derivatives. The fluoride group was introduced in the ligand to make highly electron-deficient pores inside the MOFs that can accelerate the anion-exchange process. The concept was proved by density functional theory calculation of the MOFs. Both 3D cationic MOFs were used for dye adsorption, and a remarkable amount of dye was adsorbed in the MOFs. In addition, owing to their cationic nature, the MOFs selectively removed anionic dyes from a mixture of anionic, cationic, and neutral dyes in the aqueous phase. Interestingly, the present MOFs were also highly effective for the removal of oxoanions (MnO4- and Cr2O72-) from water.
Collapse
Affiliation(s)
- Sandeep Kumar
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Songyuan Liu
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Brij Mohan
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Mingjian Zhang
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zhiyu Tao
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Zhijian Wan
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Hengzhi You
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Feiyun Sun
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Mu Li
- Shenzhen Environmental Engineering Science and New Energy Laboratory, Tsinghua-Berkeley Shenzhen Institute, Tshinghua University, Shenzhen 518055, China
| | - Peng Ren
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
9
|
Kumar S, Mohan B, Tao Z, You H, Ren P. Incorporation of homogeneous organometallic catalysts into metal–organic frameworks for advanced heterogenization: a review. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00663k] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The heterogenization of homogeneous organometallic catalysts by incorporation into MOFs using different strategies, MOF selection, OMC selection, and the use of hybrid heterogeneous catalysts OMC@MOFs in catalytic applications are summarized and discussed.
Collapse
Affiliation(s)
- Sandeep Kumar
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Brij Mohan
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Zhiyu Tao
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Hengzhi You
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Peng Ren
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|