1
|
Devassy AMC, Wankhede KD, Kamalakshan A, Mandal S. A robust single compartment peroxide fuel cell using mesoporous antimony doped tin oxide as the cathode material. NANOSCALE 2024; 16:12060-12070. [PMID: 38813765 DOI: 10.1039/d4nr01375a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
To date, metal oxide catalysts have not been explored as cathode materials for robust and high-performance single-compartment H2O2 fuel cells due to significant non-electrochemical disproportionation losses of H2O2 on many metal oxide surfaces. Here, for the first time, we demonstrate an acidic peroxide fuel cell with antimony doped tin oxide as the cathode and widely used Ni foam as the anode material. Our constructed peroxide fuel cell records a superior open circuit potential of nearly 0.82 V and a maximum power density of 0.32 mW cm-2 with high operational stability. The fuel cell performance is further improved by increasing the ionic strength of the electrolyte with the addition of 1 M NaCl, resulting in an increased maximum power density value of 1.1 mW cm-2.
Collapse
Affiliation(s)
| | - Karuna Dagaji Wankhede
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India.
| | - Adithya Kamalakshan
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India.
| | - Sarthak Mandal
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India.
| |
Collapse
|
2
|
Tada H, Naya SI, Sugime H. Near Infrared Light-to-Heat Conversion for Liquid-Phase Oxidation Reactions by Antimony-Doped Tin Oxide Nanocrystals. Chemphyschem 2022; 24:e202200696. [PMID: 36535899 DOI: 10.1002/cphc.202200696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Effective utilization of the sunlight for chemical reactions is pivotal for dealing with the growing energy and environmental issues. So far, much effort has been focused on the development of semiconductor photocatalysts responsive to UV and visible light. However, the near infrared and infrared (NIR-IR) light occupying ∼50 % of the solar energy has usually been wasted because of the low photon energy insufficient for the band gap excitation. Antimony doping into SnO2 (ATO) induces strong absorption due to the conduction band electrons in the NIR region. The absorbed light energy is eventually converted to heat via the interaction between hot electrons and phonons. This Concept highlights the photothermal effect of ATO nanocrystals (NCs) on liquid-phase oxidation reactions through the NIR light-to-heat conversion. Under NIR illumination even at an intensity of ∼0.5 sun, the reaction field temperature on the catalyst surface is raised 20-30 K above the bulk solution temperature, while the latter is maintained near the ambient temperature. In some reactions, this photothermal local heating engenders the enhancement of not only the catalytic activity and selectivity but also the regeneration of catalytically active sites. Further, the photocatalytic activity of semiconductors can be promoted. Finally, the conclusions and possible subjects in the future are summarized.
Collapse
Affiliation(s)
- Hiroaki Tada
- Department of Applied Chemistry Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan.,Graduate School of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Shin-Ichi Naya
- Environmental Research Laboratory, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Hisashi Sugime
- Department of Applied Chemistry Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
| |
Collapse
|
3
|
Han J, Yan H, Hu C, Song Q, Kang J, Guo Y, Liu Z. Simultaneous Modulation of Interface Reinforcement, Crystallization, Anti-Reflection, and Carrier Transport in Sb Gradient-Doped SnO 2 /Sb 2 S 3 Heterostructure for Efficient Photoelectrochemical Cell. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105026. [PMID: 35142067 DOI: 10.1002/smll.202105026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/26/2021] [Indexed: 06/14/2023]
Abstract
In this study, an effective quadruple optimization integrated synergistic strategy is designed to fabricate quality Sb gradient-doped SnO2 /Sb2 S3 heterostructure for an efficient photoelectrochemical (PEC) cell. The experimental results and theoretical calculations reveal that i) optical absorption matching is realized by combining the anti-reflection of SnO2 and high light absorption ability of Sb2 S3 in the visible region; ii) interface reinforcement is carried out by coordinating gradient-distributed Sb in SnO2 with S in S-rich precursor of Sb2 S3 for improving the Sb2 S3 crystallization process and matching crystalline lattice of Sb:SnO2 and Sb2 S3 ; iii) ultrahigh electron mobility is achieved by making Sb gradient-doped SnO2 ; iv) carrier separation and transport are accelerated by constructing type-II heterojunction with appropriate energy level alignment and forming a high-speed electron transport channel. All of above-mentioned optimization effects are integrated into a synergistic strategy for constructing the Sb:SnO2 /Sb2 S3 photoanode, achieving a photocurrent density of 2.30 mA cm-2 , hydrogen generation rate of 30.03 µmol cm-2 h-1 , and decent working stability. Notably, this method can also be used in other large-scale fabrication processes, such as drop-casting, spray-coating, blade-coating, printing, slot-die, etc. Moreover, this universal integrated strategy paves an avenue to fabricate efficient photoelectrodes with excellent photoelectrochemical performances.
Collapse
Affiliation(s)
- Jianhua Han
- College of Science, Civil Aviation University of China, Tianjin, 300300, China
| | - Huiyu Yan
- College of Science, Civil Aviation University of China, Tianjin, 300300, China
| | - Chenxi Hu
- College of Science, Civil Aviation University of China, Tianjin, 300300, China
| | - Qinggong Song
- College of Science, Civil Aviation University of China, Tianjin, 300300, China
| | - Jianhai Kang
- College of Science, Civil Aviation University of China, Tianjin, 300300, China
| | - Yanrui Guo
- College of Science, Civil Aviation University of China, Tianjin, 300300, China
| | - Zhifeng Liu
- College of Science, Civil Aviation University of China, Tianjin, 300300, China
- School of Materials Science and Engineering and Tianjin Key Laboratory of Building Green Functional Materials, Tianjin Chengjian University, Tianjin, 300384, China
| |
Collapse
|
4
|
Hong J, Xu C, Deng B, Gao Y, Zhu X, Zhang X, Zhang Y. Photothermal Chemistry Based on Solar Energy: From Synergistic Effects to Practical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103926. [PMID: 34825527 PMCID: PMC8787404 DOI: 10.1002/advs.202103926] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/23/2021] [Indexed: 05/07/2023]
Abstract
With the development of society, energy shortage and environmental problems have become more and more outstanding. Solar energy is a clean and sustainable energy resource, potentially driving energy conversion and environmental remediation reactions. Thus, solar-driven chemistry is an attractive way to solve the two problems. Photothermal chemistry (PTC) is developed to achieve full-spectral utilization of the solar radiation and drive chemical reactions more efficiently under relatively mild conditions. In this review, the mechanisms of PTC are summarized from the aspects of thermal and non-thermal effects, and then the interaction and synergy between these two effects are sorted out. In this paper, distinguishing and quantifying these two effects is discussed to understand PTC processes better and to design PTC catalysts more methodically. However, PTC is still a little far away from practical. Herein, several key points, which must be considered when pushing ahead with the engineering application of PTC, are proposed, along with some workable suggestions on the practical application. This review provides a unique perspective on PTC, focusing on the synergistic effects and pointing out a possible direction for practical application.
Collapse
Affiliation(s)
- Jianan Hong
- State Key Laboratory of Clean Energy UtilizationZhejiang UniversityHangzhou310027China
| | - Chenyu Xu
- Department of Chemical and Materials EngineeringUniversity of AlbertaEdmontonAlbertaT6G 1H9Canada
| | - Bowen Deng
- Graduate School of Chemical Sciences and EngineeringHokkaido UniversitySapporo060‐0814Japan
| | - Yuan Gao
- State Key Laboratory of Clean Energy UtilizationZhejiang UniversityHangzhou310027China
| | - Xuan Zhu
- State Key Laboratory of Clean Energy UtilizationZhejiang UniversityHangzhou310027China
| | - Xuhan Zhang
- State Key Laboratory of Clean Energy UtilizationZhejiang UniversityHangzhou310027China
| | - Yanwei Zhang
- State Key Laboratory of Clean Energy UtilizationZhejiang UniversityHangzhou310027China
| |
Collapse
|
5
|
In situ photo-thermal conversion nanofiber membrane consisting of hydrophilic PAN layer and hydrophobic PVDF-ATO layer for improving solar-thermal membrane distillation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Naya SI, Kunimoto T, Tada H. A photothermal catalyst consisting of manganese oxide clusters and antimony–doped tin oxide nanocrystal: Application to environmental purification. CHEM LETT 2021. [DOI: 10.1246/cl.210188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shin-ichi Naya
- Environmental Research Laboratory, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Takeshi Kunimoto
- Graduate School of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Hiroaki Tada
- Graduate School of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| |
Collapse
|