1
|
Chen X, Qin Q, Wang J, Wen W, Liu X, Wang C, Zhou L, Deng H, Li Y. Strong interaction between promoter and metal in Pd-Ba/TiO 2 catalysts for formaldehyde oxidation. J Colloid Interface Sci 2025; 678:520-531. [PMID: 39214004 DOI: 10.1016/j.jcis.2024.08.166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/04/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
As our previous works found, alkali metals have a common promotion effect on supported noble metals catalysts for formaldehyde (HCHO) oxidation. As second-group elements, alkaline earth metals (AEMs) are neighbors to the first-group elements and share some properties in common. However, detailed investigations into the specific mechanisms underlying AEMs' effects on HCHO oxidation remain limited. In this study, we found that Ba addition showed a similar promotion effect on HCHO oxidation for Pd/TiO2. Ba species stabilized Pd groups, improved the dispersion, and even caused a large number of monatomic-like Pd sites to appear, which may be attributed to the electronic interaction between promoter and metal (EIPM) between Ba and Pd. Besides, AEM loading had the important effect of increasing the electron density of metallic Pd nanoparticles, which further improved the ability for O2 activation and so enhanced the mobility of chemisorbed oxygen on the catalyst surface. For Pd/TiO2, the HCHO oxidation path is mainly HCHO→HCOOH→HCOO→H2O+CO2. By contrast, for Pd-Ba/TiO2, with more surface-active species, the formate intermediate was more likely to be directly oxidized into H2O and CO2, which is a more effective reaction pathway. The details of the EIPM between Pd and Ba were investigated by GPAW (DFT calculation module) in ASE (Atomic Simulation Environment). The AEM Ba acted as an electron donor and could interact with Pd d orbital electrons through BaO sp orbital electrons. Ba species were highly dispersed on the carrier due to the Ba-Ti interaction. Ba species dispersed over large areas stabilized the Pd particles and donated electrons to Pd. Therefore, adding an AEM is an efficacious strategy to improve the performance of the catalytic oxidation of HCHO.
Collapse
Affiliation(s)
- Xudong Chen
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Qin
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jingyi Wang
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Wen
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650000, China
| | - Xiaofeng Liu
- School of Resources & Chemical Engineering, Sanming University, Sanming 365004, China
| | - Chunying Wang
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo 315800, China.
| | - Liping Zhou
- Natural Resources Bureau of Shouning, Ningde 352000, China
| | - Hua Deng
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yaobin Li
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo 315800, China.
| |
Collapse
|
2
|
Shan R, Sheng Z, Hu S, Xiao H, Zhang Y, Zhang J, Wang L, Zhang C, Li J. Enhancing oxidation reaction over Pt-MnO 2 catalyst by activation of surface oxygen. J Environ Sci (China) 2023; 134:117-125. [PMID: 37673527 DOI: 10.1016/j.jes.2023.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/24/2022] [Accepted: 01/05/2023] [Indexed: 09/08/2023]
Abstract
Formaldehyde (HCHO) and carbon monoxide (CO) are both common air pollutants and hazardous to human body. It is imperative to develop the catalyst that is able to efficiently remove these pollutants. In this work, we activated Pt-MnO2 under different conditions for highly active oxidation of HCHO and CO, and the catalyst activated under CO displayed superior performance. A suite of complementary characterizations revealed that the catalyst activated with CO created the highly dispersed Pt nanoparticles to maintain a more positively charged state of Pt, which appropriately weakens the Mn-O bonding strength in the adjacent region of Pt for efficient supply of active oxygen during the reaction. Compared with other catalysts activated under different conditions, the CO-activated Pt-MnO2 displays much higher activity for oxidation of HCHO and CO. This research contributes to elucidating the mechanism for regulating the oxidation activity of Pt-based catalyst.
Collapse
Affiliation(s)
- Ruoting Shan
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhenteng Sheng
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Shuo Hu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hongfei Xiao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuhua Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Jianghao Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Li Wang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China.
| | - Changbin Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jinlin Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China.
| |
Collapse
|
3
|
Zhou X, Wu SM, Schmuki P. Spontaneous Dewetting of Au-Thin Layers on Oxide- and Fluorine-Terminated Single Crystalline Anatase and Efficient Use in Photocatalytic H 2 Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303306. [PMID: 37357164 DOI: 10.1002/smll.202303306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/26/2023] [Indexed: 06/27/2023]
Abstract
In the present work, the spontaneous dewetting of thin Au layers on single crystalline anatase nanosheets into narrow-disperse Au nanoparticles is investigated. Patterns of the Au particles can be formed on the main facets of anatase that provide a high co-catalytic activity for photocatalytic generation of H2 . Dewetting is distinctly influenced by the respective facets (001) and (101), the deposit thickness, and secondary thermal dewetting, but most strongly by the surface termination of the nanosheets. Fluoride termination not only leads to an enhanced Au-phobic behavior but strongly affects the co-catalytic activity for photocatalytic generation of H2 . While fluoride termination with or without Au decoration is detrimental for hole transfer, the interplay of the Au co-catalyst and surface fluoride yields highly beneficial effect for electron transfer. This results in a three-times higher photocatalytic H2 production for the F-terminated surface. The findings suggest that dewetting of Au on surface fluorinated TiO2 is an effective way to modulate surface dewetting and achieve a strongly enhanced photocatalytic activity.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Materials Science WW4-LKO, University of Erlangen-Nuremberg, Martensstrasse 7, 91058, Erlangen, Germany
| | - Si-Ming Wu
- Department of Materials Science WW4-LKO, University of Erlangen-Nuremberg, Martensstrasse 7, 91058, Erlangen, Germany
| | - Patrik Schmuki
- Department of Materials Science WW4-LKO, University of Erlangen-Nuremberg, Martensstrasse 7, 91058, Erlangen, Germany
- Regional Centre of Advanced Technologies and Materials, Palacký University Olomouc, Šlechtitelů 241/27, Olomouc, 77900, Czech Republic
| |
Collapse
|
4
|
Camposeco R, Miguel O, Torres AE, Armas DE, Zanella R. Highly active Ru/TiO 2 nanostructures for total catalytic oxidation of propane. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:98076-98090. [PMID: 37603243 PMCID: PMC10495525 DOI: 10.1007/s11356-023-29153-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/31/2023] [Indexed: 08/22/2023]
Abstract
Ruthenium is a robust catalyst for a variety of applications in environmental heterogeneous catalysis. The catalytic performance of Ru/TiO2 materials, synthesized by using the deposition precipitation with urea method, was assessed in the catalytic oxidation of C3H8, varying the ruthenium loading. The highest catalytic reactivity was obtained for a Ru loading of 2 wt. % in comparison with the 1, 1.5, 3, and 4 wt. % Ru catalysts. The physicochemical properties of the synthesized materials were investigated by XRD, N2 adsorption, TEM, FT-IR pyridine, H2-TPR, and XPS. The size of ruthenium particles was found to be greatly dependent on the pretreatment gas (air or hydrogen) and the catalytic activity was enhanced by the small-size ruthenium metal nanoparticles, leading to changes in the reduction degree of ruthenium, which also increased the Brönsted and Lewis acidity. Metal to support charge transfer enhanced the reactant adsorption sites while oxygen vacancies on the interface enabled the dissociation of O2 molecules as revealed through DFT calculations. The outstanding catalytic activity of the 2Ru/TiO2 catalysts allowed to convert C3H8 into CO2 at reaction temperatures of about 100 °C. This high activity may be attributed to the metal/support interaction between Ru and TiO2, which promoted the reducibility of Ti4+/Ti3+ and Ru4+/Ru0 species, and to the fast migration of TiO2 lattice oxygen in the catalyst. Furthermore, the Ru/TiO2 catalyst exhibited high stability and reusability for 30 h under reaction conditions, using a GHSV of 45,000 h-1. The underlying alkane-metal interactions were explored theoretically in order to explain the C-H bond activation in propane by the catalyst.
Collapse
Affiliation(s)
- Roberto Camposeco
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito Exterior S/N, C. U., 04510, Mexico City, México
| | - Omar Miguel
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito Exterior S/N, C. U., 04510, Mexico City, México
| | - Ana E Torres
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito Exterior S/N, C. U., 04510, Mexico City, México
| | - Daniela E Armas
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito Exterior S/N, C. U., 04510, Mexico City, México
| | - Rodolfo Zanella
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito Exterior S/N, C. U., 04510, Mexico City, México.
| |
Collapse
|
5
|
Zhang Y, Wang Y, Liu Y, Zhou L, Xu H, Wu Z. Simultaneous Generation of Ammonia during Nitrile Waste Gas Purification over a Silver Single-Atom-Doped Ceria Catalyst. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12513-12522. [PMID: 37542459 DOI: 10.1021/acs.est.3c03667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2023]
Abstract
Catalytic elimination of toxic nitrile waste gas is of great significance for preserving the atmospheric environment, but achieving resource utilization during its destruction has been less explored. Herein, this study proposed a universal strategy for nitrile waste gas purification and NH3 generation simultaneously. The developed silver single-atom-doped ceria nanorod (Ag1/R-CeO2) was endowed with near complete mineralization and around 90% NH3 yield at 300-350 °C for the catalytic oxidation of both acetonitrile and acrylonitrile. The introduction of the Ag single atom created more surface oxygen vacancies, thereby promoting water activation to form abundant surface hydroxyl groups. As a benefit from this, the hydrolysis reaction of nitrile to generate NH3 was accelerated. Meanwhile, the electron transfer effect from the Ag atom to Ce and hydroxyl species facilitated NH3 desorption, which inhibited the oxidation of NH3. Moreover, the increased surface oxygen vacancies also promoted the mineralization of hydrolysis carbonaceous intermediates to CO2. In contrast, the Ag nanoparticle-modified sample possessed stronger reducibility and NH3 adsorption, leading to the excessive oxidation of NH3 to N2 and NOx. This work provided a useful guidance for resourceful purification of nitrile waste gas.
Collapse
Affiliation(s)
- Yaoyu Zhang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Yuxiong Wang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Yue Liu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Ling Zhou
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Huimin Xu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Zhongbiao Wu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, People's Republic of China
| |
Collapse
|
6
|
Liu J, Liang K, Yao D, Chilivery R, Fan D, Chen W, Chen G, Li S, Li Z, Ji M, Song Y. Modulating the Coordination of Single Co Atoms to Trigger the Catalytic Oxidation of Formaldehyde at Room Temperature. Inorg Chem 2023; 62:4003-4010. [PMID: 36800283 DOI: 10.1021/acs.inorgchem.3c00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Designing efficient and stable non-precious metal catalysts remains a significant challenge for formaldehyde (HCHO) oxidation, which is an expected way to replace the employment of noble-metal catalysts. Herein, a series of atomically dispersed Co catalysts are optimized by evaporating nitrogen atoms and exploring their HCHO oxidation catalytic performance. The results show that the prepared temperature can effectively control the coordination regulation of the Co atomic site, which in turn affects the catalytic oxidation activity. Our best catalyst, the Co-N/C prepared at 1000 °C, exhibits superior activity with 92.8% of conversion at room temperature at a gas hourly space velocity (GHSV) of 72,000 mL·g-1·h-1. Extensive characterizations combined with theoretical calculations reveal that the high catalytic activity is attributed to the low-coordinated center, which can be tailored by pyrolysis temperature. This work provides an innovative strategy for catalyst design in the catalytic oxidation reaction.
Collapse
Affiliation(s)
- Jianye Liu
- College of Chemistry and Chemical Engineering, Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Kaijun Liang
- College of Chemistry and Chemical Engineering, Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
- Guangdong Laboratory of Chemistry and Fine Chemical Engineering, Shantou, Guangdong 515031, P. R. China
| | - Defu Yao
- College of Chemistry and Chemical Engineering, Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Rakesh Chilivery
- College of Chemistry and Chemical Engineering, Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Dajun Fan
- Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P. R. China
| | - Wenbin Chen
- College of Chemistry and Chemical Engineering, Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Guanli Chen
- College of Chemistry and Chemical Engineering, Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Sha Li
- Guangdong Laboratory of Chemistry and Fine Chemical Engineering, Shantou, Guangdong 515031, P. R. China
| | - Zhen Li
- College of Chemistry and Chemical Engineering, Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Muwei Ji
- College of Chemistry and Chemical Engineering, Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Yibing Song
- College of Chemistry and Chemical Engineering, Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| |
Collapse
|
7
|
Li T, Wang Z, Shi Y, Yao X. Preparation and Performance of Carbon-Based Ce-Mn Catalysts for Efficient Degradation of Acetone at Low Temperatures. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192416879. [PMID: 36554760 PMCID: PMC9779373 DOI: 10.3390/ijerph192416879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 05/28/2023]
Abstract
Based on the porous carbon material from citric acid residue, catalysts of different Ce-Mn ratios were prepared with incipient-wetness impregnation (IWI) to delve into their acetone-degrading performance and relevant mechanisms. When the Ce-Mn molar ratio is 0.8, the prepared catalyst Ce0.8-Mn/AC shows abundant and uniformly dispersed Mn and Ce particles on the surface. The content of Mn and Ce on the Ce0.8-Mn/AC surface reaches 5.64% and 0.75%, respectively. At the acetone concentration of 238 mg/m3 (100 ppm), the laws of acetone degradation in different catalysts at different catalyzing temperatures and with various oxygen concentrations were studied, and we found that the rate of acetone degradation by Ce0.8-Mn/AC can exceed 90% at 250 °C. Cerium oxide and manganese oxide are synergistic in the catalytic degradation of acetone. Adding cerium to manganese-based catalysts can increase the oxygen migration rate in the catalysts and thus raise the reduction rate of lattice oxygen in manganese oxide. The results offer new ideas and approaches for the efficient and comprehensive utilization of bio-fermentation by-products, and for the development of cheap and high degradation performance catalysts for acetone.
Collapse
Affiliation(s)
- Tong Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | - Zhibo Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Yue Shi
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Xiaolong Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
8
|
Zhang J, Shan R, Xiao H, Hu S, Sheng Z, Qin X, Zhang Y, Wang L, Li J, Zhang C. Electronic Modification by Transitional Metal Dopants to Tune the Oxidation Activity of Pt-CeO 2-Based Catalysts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17331-17340. [PMID: 36354790 DOI: 10.1021/acs.est.2c07099] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
While utilization of transitional metals as a promoter has been extensively studied to enhance the activity of Pt-based catalysts for the oxidation of formaldehyde (HCHO), there is still a lack of well elucidated property-function relationship for the rational selection of a promoter in catalyst design. Herein, we modified a Pt/CeO2 catalyst with two transitional metal dopants (i.e., Mn and Cu) that showed negligible influence on the physical structure of the Pt-CeO2 matrix but distinct effects on the activity of the catalyst. Complementary characterizations combined with density functional theory modeling revealed that the transitional metal dopants significantly modified the electronic structure of the catalyst and shifted the d-band of Pt to higher energy with different extents, which may tune the bonding strength of HCHO/intermediates with the Pt-CeO2 interface domain. The catalyst with moderate bonding strength (i.e., Pt-Mn/CeO2) displayed the highest reactivity under the ambient condition, while Pt-Cu/CeO2 with the highest bonding strength showed a dramatically decreased activity. No correlation was observed between the abundancy of the active oxygen and catalytic activity, likely due to the oxygen supply having a much higher rate than the rate-determining step. This work contributes to the elucidation about the property-function relationship of a transitional metal dopant in Pt-based catalysts for the oxidation of HCHO.
Collapse
Affiliation(s)
- Jianghao Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ruoting Shan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Hongfei Xiao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shuo Hu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhenteng Sheng
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Xiaoxiao Qin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhua Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Li Wang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Jinlin Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Changbin Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
A Review of Noble Metal Catalysts for Catalytic Removal of VOCs. Catalysts 2022. [DOI: 10.3390/catal12121543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Volatile organic compounds (VOCs) are important precursors for the formation of secondary pollutants, such as fine particulate matter (PM) and ozone (O3), which will lead to severe atmospheric environmental problems to restrict the sustainable development of the social economy. Catalytic oxidation is a safe, eco-friendly, and simple method for eliminating VOCs, which can be converted into CO2 and H2O without the generation of other harmful substances. The fabrication and development of catalysts are very crucial to enhance the catalytic oxidation efficiency of the removal of VOCs. The noble metal catalyst is one of the commonly used catalysts for the catalytic oxidation of VOCs because of the high reaction activity, good stability, poisoning-resistant ability, and easy regeneration. In this review, the research progress of noble metal (Pt, Pd, Au, Ag, and Ir) catalysts for the removal of VOCs in recent years was summarized with the discussion of the influence factors in the preparation process on the catalytic performance. The reaction mechanisms of the removal of VOCs over the corresponding noble metal catalysts were also briefly discussed.
Collapse
|
10
|
Li D, Chen X, Huang Y, Zhang G, Zhou D, Xiao B. Selective catalytic oxidation of formaldehyde on single V- and Cr-atom decorated magnetic C 4N 3 substrate: A first principles study. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129608. [PMID: 35872455 DOI: 10.1016/j.jhazmat.2022.129608] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/04/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Formaldehyde (HCHO) is the most common indoor hazardous pollutant and has attracted great concern because its long-term exposure has adverse health effects on humans. Retention and catalytic oxidation of highly hazardous HCHO is an efficient and environmentally friendly method to use for air remediation, but a major obstacle to this procedure is the lack of an appropriate catalyst. Herein, two-dimensional magnetic C4N3 material with a 3d-transition metal as activate sites was systemically investigated in HCHO oxidation using density functional theory calculations. The results show that V-C4N3 and Cr-C4N3 have high structural stability and shallow activation barriers for O2 decomposition; these characteristics provide the necessary precursors for the subsequent oxidation reaction. Moreover, the V-C4N3 and Cr-C4N3 catalysts have unique selective adsorption and catalysis toward HCHO in a mixture of some typical in-door volatile organic compounds (VOCs) and air. The corresponding dynamic barrier for each reaction step was investigated and the mechanism involved in HCHO oxidation was revealed in detail. Aggregation of metal atoms in the V-C4N3 and Cr-C4N3 catalysts is prevented by enormous diffusion resistance, and this is further confirmed by AIMD simulations. These results provide insightful guidance for developing advanced magnetic catalysts for HCHO oxidation to improve the remediation of air contaminants.
Collapse
Affiliation(s)
- Deqiao Li
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Xianfei Chen
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, China.
| | - Yi Huang
- College of Environment and Ecology, Chengdu University of Technology, Chengdu 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, China.
| | - Guanru Zhang
- College of Environment and Ecology, Chengdu University of Technology, Chengdu 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, China
| | - Dan Zhou
- College of Environment and Ecology, Chengdu University of Technology, Chengdu 610059, China
| | - Beibei Xiao
- School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| |
Collapse
|
11
|
Zhang L, Bao Q, Zhang B, Zhang Y, Wan S, Wang S, Lin J, Xiong H, Mei D, Wang Y. Distinct Role of Surface Hydroxyls in Single-Atom Pt 1/CeO 2 Catalyst for Room-Temperature Formaldehyde Oxidation: Acid-Base Versus Redox. JACS AU 2022; 2:1651-1660. [PMID: 35911462 PMCID: PMC9327081 DOI: 10.1021/jacsau.2c00215] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The development of highly efficient catalysts for room-temperature formaldehyde (HCHO) oxidation is of great interest for indoor air purification. In this work, it was found that the single-atom Pt1/CeO2 catalyst exhibits a remarkable activity with complete removal of HCHO even at 288 K. Combining density functional theory calculations and in situ DRIFTS experiments, it was revealed that the active OlatticeH site generated on CeO2 in the vicinity of Pt2+ via steam treatment plays a key role in the oxidation of HCHO to formate and its further oxidation to CO2. Such involvement of hydroxyls is fundamentally different from that of cofeeding water which dissociates on metal oxide and catalyzes the acid-base-related chemistry. This study provides an important implication for the design and synthesis of supported Pt catalysts with atom efficiency for a very important practical application-room-temperature HCHO oxidation.
Collapse
Affiliation(s)
- Lina Zhang
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, College of
Chemistry and Chemical Engineering, Xiamen
University, Xiamen 361005, China
- National
Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qianqian Bao
- State
Key Laboratory of Separation Membranes and Membrane Processes, School
of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Bangjie Zhang
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, College of
Chemistry and Chemical Engineering, Xiamen
University, Xiamen 361005, China
- National
Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yuanbao Zhang
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, College of
Chemistry and Chemical Engineering, Xiamen
University, Xiamen 361005, China
- National
Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shaolong Wan
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, College of
Chemistry and Chemical Engineering, Xiamen
University, Xiamen 361005, China
- National
Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shuai Wang
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, College of
Chemistry and Chemical Engineering, Xiamen
University, Xiamen 361005, China
- National
Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jingdong Lin
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, College of
Chemistry and Chemical Engineering, Xiamen
University, Xiamen 361005, China
- National
Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Haifeng Xiong
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, College of
Chemistry and Chemical Engineering, Xiamen
University, Xiamen 361005, China
- National
Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Donghai Mei
- State
Key Laboratory of Separation Membranes and Membrane Processes, School
of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Yong Wang
- Voiland
School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
12
|
Fan J, Wang T, Wu B, Wang C. Highly Active Amino-Fullerene Derivative-Modified TiO2 for Enhancing Formaldehyde Degradation Efficiency under Solar-Light Irradiation. NANOMATERIALS 2022; 12:nano12142366. [PMID: 35889590 PMCID: PMC9321472 DOI: 10.3390/nano12142366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 01/27/2023]
Abstract
Formaldehyde (HCHO) is a ubiquitous indoor pollutant that seriously endangers human health. The removal of formaldehyde effectively at room temperature has always been a challenging problem. Here, a kind of amino-fullerene derivative (C60-EDA)-modified titanium dioxide (C60-EDA/TiO2) was prepared by one-step hydrothermal method, which could degrade the formaldehyde under solar light irradiation at room temperature with high efficiency and stability. Importantly, the introduction of C60-EDA not only increases the adsorption of the free formaldehyde molecules but also improves the utilization of sunlight and suppresses photoelectron-hole recombination. The experimental results indicated that the C60-EDA/TiO2 nanoparticles exhibit much higher formaldehyde removal efficiency than carboxyl-fullerene-modified TiO2, pristine TiO2 nanoparticles, and almost all other reported formaldehyde catalysts especially in the aspect of the quality of formaldehyde that is treated by catalyst with unit mass (mHCHO/mcatalyst = 40.85 mg/g), and the removal efficiency has kept more than 96% after 12 cycles. Finally, a potential formaldehyde degradation pathway was deduced based on the situ diffuse reflectance infrared Fourier transform spectrometry (DRIFTS) and reaction intermediates. This work provides some indications into the design and fabrication of the catalysts with excellent catalytic performances for HCHO removal at room temperature.
Collapse
Affiliation(s)
- Jingbiao Fan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (J.F.); (T.W.)
| | - Tao Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (J.F.); (T.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (J.F.); (T.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (B.W.); (C.W.)
| | - Chunru Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (J.F.); (T.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (B.W.); (C.W.)
| |
Collapse
|
13
|
|
14
|
Yan Z, Huang G, Wang G, Xiang M, Han X, Xu Z. Fluorescent lamp promoted formaldehyde removal over CeO2 catalysts at ambient temperature. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2021.06.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Molino A, Hamandi M, Grosjean R, Dappozze F, Lamaa L, Peruchon L, Brochier C, Dembélé K, El Hajem M, Vernoux P, Guillard C, Kaper H. Coupling of photocatalysis and catalysis using an optical fiber textile for room temperature depollution. CHEMOSPHERE 2022; 297:133940. [PMID: 35231472 DOI: 10.1016/j.chemosphere.2022.133940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/22/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Herein, we investigate the interplay between a photocatalyst (TiO2) and a catalyst (Pt/TiO2 and Pt/CeO2) for the oxidation of formaldehyde and toluene at room temperature. A luminous textile is used as support and as light source for the photocatalyst. Our results indicate that the presence of the catalyst and the photocatalyst increases the catalytic performance for the oxidation of formaldehyde, while the photocatalytic performance for toluene oxidation decreases. The overall performance (toluene and formaldehyde degradation) of the system can be optimized with respect to the choice of support for the catalyst (e.g. TiO2 or CeO2), the quantity of Pt used, and the ratio between the catalyst and photocatalyst. In addition, different configurations of the photocatalyst and the catalyst on the textile are studied: under leaching and flow-through gas streams, catalyst and photocatalyst deposition on the same and opposite site of the textile are tested. The performance of the system can be optimized by adapting a configuration where the gas stream goes through the textile, while the deposition side of the catalyst and/or photocatalyst with respect to the gas stream is of minor importance.
Collapse
Affiliation(s)
- A Molino
- Laboratoire de Synthèse et Fonctionnalisation des Céramiques, CNRS/Saint-Gobain CREE, Saint-Gobain Research Provence, 550, Ave Alphonse Jauffret, 84306, Cavaillon, France
| | - M Hamandi
- Université de Lyon, Université Claude Bernard Lyon, CNRS, IRCELYON, 2 av Albert Einstein, 69626, Villeurbanne, France
| | - R Grosjean
- Laboratoire de Synthèse et Fonctionnalisation des Céramiques, CNRS/Saint-Gobain CREE, Saint-Gobain Research Provence, 550, Ave Alphonse Jauffret, 84306, Cavaillon, France
| | - F Dappozze
- Université de Lyon, Université Claude Bernard Lyon, CNRS, IRCELYON, 2 av Albert Einstein, 69626, Villeurbanne, France
| | - L Lamaa
- Brochier Technologies, 90 rue Frédéric Faÿs, 69100, Villeurbanne, France
| | - L Peruchon
- Brochier Technologies, 90 rue Frédéric Faÿs, 69100, Villeurbanne, France
| | - C Brochier
- Brochier Technologies, 90 rue Frédéric Faÿs, 69100, Villeurbanne, France
| | - K Dembélé
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Department of Inorganic Chemistry, Faradayweg 4-6, 14195, Berlin, Germany
| | - M El Hajem
- Université de Lyon, INSA de Lyon, Ecole Centrale de Lyon, Université Claude Bernard Lyon 1, CNRS, LMFA UMR, 5509, Villeurbanne, France
| | - P Vernoux
- Université de Lyon, Université Claude Bernard Lyon, CNRS, IRCELYON, 2 av Albert Einstein, 69626, Villeurbanne, France
| | - C Guillard
- Université de Lyon, Université Claude Bernard Lyon, CNRS, IRCELYON, 2 av Albert Einstein, 69626, Villeurbanne, France
| | - H Kaper
- Laboratoire de Synthèse et Fonctionnalisation des Céramiques, CNRS/Saint-Gobain CREE, Saint-Gobain Research Provence, 550, Ave Alphonse Jauffret, 84306, Cavaillon, France.
| |
Collapse
|
16
|
The Photocatalytic Performance of Ag-Decorated SiO2 Nanoparticles (NPs) and Binding Ability between Ag NPs and Modifiers. COATINGS 2022. [DOI: 10.3390/coatings12020146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
This study demonstrates a method for synthesizing Ag-decorated SiO2 NPs, which combined surface modification and electroless plating. The binding ability between the Ag NPs and modifiers was also investigated for the first time. The resulting products were characterized by electron microscopy and a UV–Visible spectrophotometer, which confirmed that OH− modified composite has the most uniform coating of Ag NPs and the largest Ag elemental composition. The efficiency of degrading methylene blue (MB) under visible light for 60 min was above 99%. The normalized reaction constant also confirmed the experimental results. In brief, this study verifies an optimal surface modifier of the binding ability with Ag NPs and the feasibility of this structure to effectively absorb the solar spectrum and further apply it to the photodegradation reaction.
Collapse
|
17
|
Noble-Metal-Based Catalytic Oxidation Technology Trends for Volatile Organic Compound (VOC) Removal. Catalysts 2022. [DOI: 10.3390/catal12010063] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Volatile organic compounds (VOCs) are toxic and are considered the most important sources for the formation of photochemical smog, secondary organic aerosols (SOAs), and ozone. These can also greatly affect the environment and human health. For this reason, VOCs are removed by applying various technologies or reused after recovery. Catalytic oxidation for VOCs removal is widely applied in the industry and is regarded as an efficient and economical method compared to other VOCs removal technologies. Currently, a large amount of VOCs are generated in industries with solvent-based processes, and the ratio of aromatic compounds is high. This paper covers recent catalytic developments in VOC combustion over noble-metal-based catalysts. In addition, this report introduces recent trends in the development of the catalytic mechanisms of VOC combustion and the deactivation of catalysts, such as coke formation, poisoning, sintering, and catalyst regeneration. Since VOC oxidation by noble metal catalysts depends on the support of and mixing catalysts, an appropriate catalyst should be used according to reaction characteristics. Moreover, noble metal catalysts are used together with non-noble metals and play a role in the activity of other catalysts. Therefore, further elucidation of their function and catalytic mechanism in VOC removal is required.
Collapse
|
18
|
Liu F, Zhang S, Zhang X, Shen J, Wan L, Bahi A, Ko F. Synergy of surface sodium and hydroxyl on NaTi 2HO 5 nanotubes accelerating the Pt-dominated ambient HCHO oxidation. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126769. [PMID: 34388924 DOI: 10.1016/j.jhazmat.2021.126769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/01/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Surface hydroxyl is widely perceived as conducive to HCHO degradation. Here, a kind of sodium titanate with interlayered hydroxyls (NaTi2HO5) was prepared to study the action conditions of surface hydroxyls in HCHO oxidation. The nanotubes mainly exposing (001) and nanobelts mainly exposing (100) are synthesized as the two morphologies of NaTi2HO5. We found the (001) facet is much more favored to HCHO adsorption via HRTEM and XPS analysis. The DFT calculations prove that the synergy of surface hydroxyl and Na atom is perfect for HCHO chemisorption. By this means NaTi2HO5 nanotubes can partially oxidize HCHO into formate and release very few CO, measured by in situ DRIFTS. Dominated by Pt nanoparticles, the complete oxidation of HCHO can be performed on NaTi2HO5 nanotubes with enhanced early reaction speed. Rather than simple surface hydroxyl, the effective synergy of hydroxyl and positive ion is proposed as an advantage for HCHO oxidation.
Collapse
Affiliation(s)
- Fang Liu
- Hunan Key Laboratory of Applied Environmental Photocatalysis, Changsha University, Changsha 410022, PR China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Shiying Zhang
- Hunan Key Laboratory of Applied Environmental Photocatalysis, Changsha University, Changsha 410022, PR China.
| | - Xiangchao Zhang
- Hunan Key Laboratory of Applied Environmental Photocatalysis, Changsha University, Changsha 410022, PR China
| | - Jie Shen
- Hunan Key Laboratory of Applied Environmental Photocatalysis, Changsha University, Changsha 410022, PR China
| | - Long Wan
- College of Materials Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Addie Bahi
- Department of Materials Engineering, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Frank Ko
- Department of Materials Engineering, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
19
|
Liu X, Wang C, Li Y, He H. Acid pretreatment of support promotes Pd/SiO 2 activity for formaldehyde oxidation at room temperature. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01410f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydroxyl groups on SiO2 produced by acid pretreatment favored the anchoring of Pd particles and increased their dispersion, which induced more oxygen vacancies on the surface of catalysts and further enhanced H2O activation.
Collapse
Affiliation(s)
- Xiaofeng Liu
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunying Wang
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, Ningbo 315800, China
| | - Yaobin Li
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, Ningbo 315800, China
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Hong He
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, Ningbo 315800, China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
20
|
Bourguignon M, Grignard B, Detrembleur C. Introducing Polyhydroxyurethane Hydrogels and Coatings for Formaldehyde Capture. ACS APPLIED MATERIALS & INTERFACES 2021; 13:54396-54408. [PMID: 34747169 DOI: 10.1021/acsami.1c16917] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Formaldehyde (FA) is a harmful chemical product largely used for producing resins found in our living spaces. Residual FA that leaches out the resin contributes to our indoor air pollution and causes some important health issues. Systems able to capture this volatile organic compound are highly desirable; however, traditional adsorbents are most often restricted to air filtration systems. Herein, we report novel waterborne coatings that are acting as a FA sponge for indoor air decontamination. These coatings, of the poly(hydroxyurethane) (PHU) type, rich in primary amine groups, are prepared by the polyaddition of a hydrosoluble dicyclic carbonate to a polyamine in water at room temperature under catalyst-free conditions. We highlight the importance of the choice of the polyamine on the curing rate of the formulation and on the FA capture ability of PHU. The excellent FA capturing ability of the best candidate is rationalized by investigating the action mode of the polyamine used to construct PHUs. With poly(vinyl amine), FA is covalently and permanently bound to PHU, with no release over time. The performance of the coating in FA abatement is impressive, with more than 90% of captured FA after one day of contact. The facility to prepare these transparent and colorless coatings from waterborne formulations gives access to new efficient indoor air depolluting solutions, potentially applicable to various surfaces of our living spaces (wall, ceiling, etc.).
Collapse
Affiliation(s)
- Maxime Bourguignon
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liege, Chemistry Department, Sart-Tilman B6A, 4000 Liege, Belgium
| | - Bruno Grignard
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liege, Chemistry Department, Sart-Tilman B6A, 4000 Liege, Belgium
| | - Christophe Detrembleur
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liege, Chemistry Department, Sart-Tilman B6A, 4000 Liege, Belgium
| |
Collapse
|
21
|
Etim UJ, Bai P, Gazit OM, Zhong Z. Low-Temperature Heterogeneous Oxidation Catalysis and Molecular Oxygen Activation. CATALYSIS REVIEWS 2021. [DOI: 10.1080/01614940.2021.1919044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ubong J. Etim
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong, China
| | - Peng Bai
- College of Chemical Engineering, China University of Petroleum, Qingdao, China
| | - Oz M. Gazit
- Wolfson Faculty of Chemical Engineering, Technion – Israel Institute of Technology, Haifa, Israel
| | - Ziyi Zhong
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong, China
- Technion Israel Institute of Technology (IIT), Haifa, Israel
| |
Collapse
|
22
|
Abstract
Air pollution has been a recurring problem in northern Chinese cities, and high concentrations of PM2.5 in winter have been a particular cause for concern. Secondary aerosols converted from precursor gases (i.e., nitrogen oxides and volatile organic compounds) evidently account for a large fraction of the PM2.5. Conventional control methods, such as dust removal, desulfurization, and denitrification, help reduce emissions from stationary combustion sources, but these measures have not led to decreases in haze events. Recent advances in nanomaterials and nanotechnology provide new opportunities for removing fine particles and gaseous pollutants from ambient air and reducing the impacts on human health. This review begins with overviews of air pollution and traditional abatement technologies, and then advances in ambient air purification by nanotechnologies, including filtration, adsorption, photocatalysis, and ambient-temperature catalysis are presented—from fundamental principles to applications. Current state-of-the-art developments in the use of nanomaterials for particle removal, gas adsorption, and catalysis are summarized, and practical applications of catalysis-based techniques for air purification by nanomaterials in indoor, semi-enclosed, and open spaces are highlighted. Finally, we propose future directions for the development of novel disinfectant nanomaterials and the construction of advanced air purification devices.
Collapse
|
23
|
Abstract
Due to its excellent oxygen storage capacity, ceria is a well-known oxidation catalyst. However, its performance in the oxidation of volatile organic compounds can be improved by the introduction of gold. Depending on the type of VOC to be oxidized, the surface of gold nanoparticles and the gold/ceria interface may contribute to enhanced activity and/or selectivity. Choosing a proper preparation method is crucial to obtain optimal gold particle size. Deposition–precipitation was found to be more suitable than coprecipitation or impregnation. For industrial applications, monolithic catalysts are needed to minimize the pressure drop in the reactor and reduce mass and heat transfer limitations. In addition to the approach used with powder catalysts, the method employed to introduce gold in/on the washcoat has to be considered.
Collapse
|
24
|
Tang Y, Zhang M, Nawaz SA, Tian X, Wang H, Wang J. TiO 2hierarchical nano blooming-flower decorated by Pt for formaldehyde detection. NANOTECHNOLOGY 2021; 32:365601. [PMID: 34038880 DOI: 10.1088/1361-6528/ac056c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
To achieve an ultra-low concentration formaldehyde detection at low temperature, a platinum (Pt) assisted TiO2hierarchical nano blooming-flower sphere material is synthesized through hydrothermal method. SEM and transmission electron microscope characterizations show that the diameter of the nano sphere was around 2μm with dissilient rods of 60 nm in diameter and 1μm in length on the surface. The response (Ra/Rg) achieved form this nanomaterial to HCHO is 1.08 (100 ppb) and 5.82 (5 ppm) at 130 °C without an involvement of any light source or solution. The relationship curve between the responses and concentrations shows regular exponential trend. The verification of sensor stability done by a 3 month reliability test shows no response-degradation. The optimal response and stability is attributed to the massive dissilient rods on the surface of TiO2spheres and the assistance of Pt as a catalyzer disperses to intensify the formation of depletion area on the surface of TiO2. This study provide an attractive and cost effective solution for the detection of HCHO in air at a relatively low temperature.
Collapse
Affiliation(s)
- Yankun Tang
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, People's Republic of China
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, People's Republic of China
| | - Ming Zhang
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, People's Republic of China
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, People's Republic of China
| | - Sher Ali Nawaz
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, People's Republic of China
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, People's Republic of China
| | - Xianqing Tian
- China Academy of Engineering Physics, Institute of Chemical Materials, 64 Mianshan Road, Mianyang, Sichuan, 621900, People's Republic of China
| | - Hairong Wang
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, People's Republic of China
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, People's Republic of China
| | - Jiuhong Wang
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, People's Republic of China
| |
Collapse
|
25
|
Zhao H, Tang B, Tang J, Cai Y, Cui Y, Liu H, Wang L, Wang Y, Zhan W, Guo Y, Guo Y. Ambient Temperature Formaldehyde Oxidation on the Pt/Na-ZSM-5 Catalyst: Tuning Adsorption Capacity and the Pt Chemical State. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00732] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hailin Zhao
- Key Laboratory for Advanced Materials, Laboratory for Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Bingjing Tang
- Key Laboratory for Advanced Materials, Laboratory for Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jie Tang
- Technology Department, Shanghai HuaYi New Material Co., Ltd., 139 Pugong Road, Shanghai 201507, China
| | - Yafeng Cai
- Key Laboratory for Advanced Materials, Laboratory for Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yao Cui
- Technology Department, Shanghai HuaYi New Material Co., Ltd., 139 Pugong Road, Shanghai 201507, China
| | - Hao Liu
- Key Laboratory for Advanced Materials, Laboratory for Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Li Wang
- Key Laboratory for Advanced Materials, Laboratory for Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yunsong Wang
- Key Laboratory for Advanced Materials, Laboratory for Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Wangcheng Zhan
- Key Laboratory for Advanced Materials, Laboratory for Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yanglong Guo
- Key Laboratory for Advanced Materials, Laboratory for Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yun Guo
- Key Laboratory for Advanced Materials, Laboratory for Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
26
|
Chen D, Zhang G, Wang M, Li N, Xu Q, Li H, He J, Lu J. Pt/MnO 2 Nanoflowers Anchored to Boron Nitride Aerogels for Highly Efficient Enrichment and Catalytic Oxidation of Formaldehyde at Room Temperature. Angew Chem Int Ed Engl 2021; 60:6377-6381. [PMID: 33345451 DOI: 10.1002/anie.202013667] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Indexed: 12/13/2022]
Abstract
The catalytic room temperature oxidation of formaldehyde (HCHO) is widely considered as a viable method for the abatement of indoor toxic HCHO pollution. Herein, Pt/MnO2 nanoflowers anchored to boron nitride aerogels (Pt/MnO2 -BN) were fabricated for the catalytic room temperature oxidation of HCHO. The three-dimensional Pt/MnO2 -BN aerogels demonstrated superior catalytic activity as a result of the improved diffusion of the reactant molecules within the porous structure. Furthermore, the porous aerogels displayed excellent HCHO adsorption capacities, which promote a rapid HCHO gas-phase concentration reduction and a subsequent complete oxidation of the adsorbed HCHO. The combined adsorption and oxidation properties of the Pt/MnO2 -BN aerogels enhance the oxidative removal of HCHO. The optimized Pt/MnO2 -BN demonstrated excellent catalytic activity toward HCHO (200 ppm) at room temperature, achieving a 96 % formaldehyde conversion after 50 min.
Collapse
Affiliation(s)
- Dongyun Chen
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Guping Zhang
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Mengmeng Wang
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Najun Li
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Qingfeng Xu
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Hua Li
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Jinghui He
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
27
|
Chen D, Zhang G, Wang M, Li N, Xu Q, Li H, He J, Lu J. Pt/MnO
2
Nanoflowers Anchored to Boron Nitride Aerogels for Highly Efficient Enrichment and Catalytic Oxidation of Formaldehyde at Room Temperature. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Dongyun Chen
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 P. R. China
| | - Guping Zhang
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 P. R. China
| | - Mengmeng Wang
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 P. R. China
| | - Najun Li
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 P. R. China
| | - Qingfeng Xu
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 P. R. China
| | - Hua Li
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 P. R. China
| | - Jinghui He
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 P. R. China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 P. R. China
| |
Collapse
|
28
|
Jitwatanasirikul T, Roongcharoen T, Chitpakdee C, Jungsuttiwong S, Poldorn P, Takahashi K, Namuangruk S. Co-embedded sulfur vacant MoS 2 monolayer as a promising catalyst for formaldehyde oxidation: a theoretical evaluation. NEW J CHEM 2021. [DOI: 10.1039/d1nj02869c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we theoretically evaluated the complete catalytic oxidation of formaldehyde (HCHO) catalyzed by a cobalt embedded sulfur vacant MoS2 (COSv–MoS2) monolayer.
Collapse
Affiliation(s)
- Thanadol Jitwatanasirikul
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Warinchamrap, Ubon Ratchathani, 34190, Thailand
| | - Thantip Roongcharoen
- National Nanotechnology Center, National Science and Technology Development Agency, Pathumthani 12120, Thailand
| | - Chirawat Chitpakdee
- National Nanotechnology Center, National Science and Technology Development Agency, Pathumthani 12120, Thailand
| | - Siriporn Jungsuttiwong
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Warinchamrap, Ubon Ratchathani, 34190, Thailand
| | - Preeyaporn Poldorn
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Warinchamrap, Ubon Ratchathani, 34190, Thailand
| | - Kaito Takahashi
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Supawadee Namuangruk
- National Nanotechnology Center, National Science and Technology Development Agency, Pathumthani 12120, Thailand
| |
Collapse
|
29
|
Qin X, Chen X, Chen M, Zhang J, He H, Zhang C. Highly efficient Ru/CeO 2 catalysts for formaldehyde oxidation at low temperature and the mechanistic study. Catal Sci Technol 2021. [DOI: 10.1039/d0cy01894e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Ru species have a high redox capacity on a CeO2 support, and the metallic Ru species could be easily oxidized back to RuOx species.
Collapse
Affiliation(s)
- Xiaoxiao Qin
- State Key Joint Laboratory of Environment Simulation and Pollution Control
- Research Center for Eco-environmental Sciences, Chinese Academy of Sciences
- Beijing
- China
- University of Chinese Academy of Sciences
| | - Xueyan Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control
- Research Center for Eco-environmental Sciences, Chinese Academy of Sciences
- Beijing
- China
- University of Chinese Academy of Sciences
| | - Min Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control
- Research Center for Eco-environmental Sciences, Chinese Academy of Sciences
- Beijing
- China
- University of Chinese Academy of Sciences
| | - Jianghao Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control
- Research Center for Eco-environmental Sciences, Chinese Academy of Sciences
- Beijing
- China
- University of Chinese Academy of Sciences
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control
- Research Center for Eco-environmental Sciences, Chinese Academy of Sciences
- Beijing
- China
- University of Chinese Academy of Sciences
| | - Changbin Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control
- Research Center for Eco-environmental Sciences, Chinese Academy of Sciences
- Beijing
- China
- University of Chinese Academy of Sciences
| |
Collapse
|
30
|
Wang C, Li Y, Zheng L, Zhang C, Wang Y, Shan W, Liu F, He H. A Nonoxide Catalyst System Study: Alkali Metal-Promoted Pt/AC Catalyst for Formaldehyde Oxidation at Ambient Temperature. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03196] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chunying Wang
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaobin Li
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo 315800, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Changbin Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yin Wang
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Wenpo Shan
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo 315800, China
| | - Fudong Liu
- Department of Civil, Environmental, and Construction Engineering (CECE), Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States
| | - Hong He
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo 315800, China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
31
|
Soni V, Goel V, Singh P, Garg A. Abatement of formaldehyde with photocatalytic and catalytic oxidation: a review. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2020. [DOI: 10.1515/ijcre-2020-0003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Formaldehyde is one of the vital chemicals produced by industries, transports, and domestic products. Formaldehyde emissions adversely affect human health and it is well known for causing irritation and nasal tumors. The major aim of the modern indoor formaldehyde control study is in view of energy capacity, product selectivity, security, and durability for efficient removal of formaldehyde. The two important methods to control this harmful chemical in the indoor environments are photocatalytic oxidation and catalytic oxidation with noble metals and transition metal oxides. By harmonizing different traditional photocatalytic and catalytic oxidation technologies that have been evolved already, here we give a review of previously developed efforts to degrade indoor formaldehyde. The major concern in this article is based on getting the degradation of formaldehyde at ambient temperature. In this article, different aspects of these two methods with their merits and demerits are discussed. The possible effects of operating parameters like preparation methods, support, the effect of light intensity in photocatalytic oxidation, relative humidity, etc. have been discussed comprehensively.
Collapse
Affiliation(s)
- Vipin Soni
- Department of Mechanical Engineering , National Institute of Technology , Hamirpur , H.P. 177005 , India
| | - Varun Goel
- Department of Mechanical Engineering , National Institute of Technology , Hamirpur , H.P. 177005 , India
| | - Paramvir Singh
- Combustion Research Laboratory , Aerospace Engineering Department , Indian Institute of Technology Bombay , Mumbai 400076 , India
| | - Alok Garg
- Department of Chemical Engineering , National Institute of Technology , Hamirpur , H.P. 177005 , India
| |
Collapse
|
32
|
Xu J, Xiao X, Zhang Z, Wu Y, Boyle DT, Lee HK, Huang W, Li Y, Wang H, Li J, Zhu Y, Chen B, Mitch W, Cui Y. Designing a Nanoscale Three-phase Electrochemical Pathway to Promote Pt-catalyzed Formaldehyde Oxidation. NANO LETTERS 2020; 20:8719-8724. [PMID: 33201720 DOI: 10.1021/acs.nanolett.0c03560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Gas-phase heterogeneous catalysis is a process spatially constrained on the two-dimensional surface of a solid catalyst. Here, we introduce a new toolkit to open up the third dimension. We discovered that the activity of a solid catalyst can be dramatically promoted by covering its surface with a nanoscale-thin layer of liquid electrolyte while maintaining efficient delivery of gas reactants, a strategy we call three-phase catalysis. Introducing the liquid electrolyte converts the original surface catalytic reaction into an electrochemical pathway with mass transfer facilitated by free ions in a three-dimensional space. We chose the oxidation of formaldehyde as a model reaction and observed a 25000-times enhancement in the turnover frequency of Pt in three-phase catalysis as compared to conventional heterogeneous catalysis. We envision three-phase catalysis as a new dimension for catalyst design and anticipate its applications in more chemical reactions from pollution control to the petrochemical industry.
Collapse
Affiliation(s)
- Jinwei Xu
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Xin Xiao
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Zewen Zhang
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Yecun Wu
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - David T Boyle
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Hiang Kwee Lee
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Wenxiao Huang
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Yuzhang Li
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Hansen Wang
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Jun Li
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Yangying Zhu
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - William Mitch
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| | - Yi Cui
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| |
Collapse
|
33
|
Abstract
An aqueous impregnation method using manganese (II) nitrate precursor, followed by calcination at 400 °C, was carried out for the preparation of manganese doped hydroxyapatite catalysts (MnxHap; x = Mn wt.%: 2.5, 5.0, 10, 20, and 30 based on MnO2). Methods of characterization including inductively coupled plasma spectroscopy (ICP), N2 physisorption, X-ray Diffraction (XRD), Fourier-Transform Transmission Infrared (FT-IR), Raman, and Thermal gravimetric analysis (TGA/MS) analysis were used for the identification of Mn species and its surrounding environment. Raman spectroscopy indicated the presence of the ε-MnO2 phase for Mn20Hap and Mn30Hap in agreement with the XRD results and the presence of β-MnOOH species for Mn5Hap and Mn10Hap. The formaldehyde total oxidation was investigated on these catalysts and it was shown that Mn5Hap was the most active catalyst, achieving a normalized rate of formaldehyde (HCHO) conversion into CO2 per mole of Mn of 0.042 h−1 at a temperature of 145 °C. The well dispersed oxidized manganese species on Hap with a medium Mn AOS (average oxidation state) were mainly responsible for this performance. Since HCHO was retained on the surface of all catalysts during the catalytic test, the combined Diffuse Reflectance Infrared Fourier Transform spectroscopy (DRIFT) experiment at room temperature and thermodesorption (TD)-FTIR identified formate species as their oxidation consumed surface OH groups. A stability test and moisture effect study showed that the presence of water vapor has a beneficial effect on the performances of the catalyst.
Collapse
|
34
|
Effect of the variation of metal and cerium loadings on CeO2x–TiO2(100−x) supports in the complete catalytic oxidation of formaldehyde. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04299-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Lin Y, Cao Y, Yao Q, Chai OJH, Xie J. Engineering Noble Metal Nanomaterials for Pollutant Decomposition. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04258] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yingzheng Lin
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Yitao Cao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Qiaofeng Yao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Osburg Jin Huang Chai
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Jianping Xie
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| |
Collapse
|
36
|
Zhou J, Liu G, Jiang Q, Zhao W, Ao Z, An T. Density functional theory calculations on single atomic catalysis: Ti-decorated Ti3C2O2 monolayer (MXene) for HCHO oxidation. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(20)63571-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
37
|
Chen X, He G, Li Y, Chen M, Qin X, Zhang C, He H. Identification of a Facile Pathway for Dioxymethylene Conversion to Formate Catalyzed by Surface Hydroxyl on TiO2-Based Catalyst. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01901] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xueyan Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangzhi He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaobin Li
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Min Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxiao Qin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changbin Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
38
|
Chen J, Jiang M, Chen J, Xu W, Jia H. Selective immobilization of single-atom Au on cerium dioxide for low-temperature removal of C1 gaseous contaminants. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122511. [PMID: 32208320 DOI: 10.1016/j.jhazmat.2020.122511] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 06/10/2023]
Abstract
Selective immobilization of single-atom Au on the specific facets of CeO2 has been successfully performed by redox etching precipitation (REP), which makes it possible to clearly refine the interfacial effect of multiple-facet support on single atom. With systemic characterizations, it is found that single-atom Au is apt to lie on nonpolar facets of CeO2 (111) and (110) rather than polar facet of CeO2 (100). The modification of morphology-dependent properties is attributed to the different interaction between Au atom and each CeO2 interface. Because of synergy between Au and CeO2, more oxygen vacancies and more active oxygen species are generated; meanwhile, the interfacial effect stabilizes the charged Au species which serves as active site. Therefore, the performance in catalytic oxidation of HCHO and CO on CeO2 is facilitated by loading Au. Among them, CeO2 rod-supported Au as an optimal catalyst exhibits a remarkable activity and stability. With in-situ characterization, the reaction mechanisms for HCHO and CO oxidation over Au/r-CeO2 are studied. Meanwhile, it is proved that REP strategy is also valid to obviously promote catalytic performance whenever commercial CeO2 is used or Au is replaced with Ag, so the improvement of recently applied catalyst with REP process is promising.
Collapse
Affiliation(s)
- Jin Chen
- CAS Center for Excellence in Regional Atmospheric Environment, and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Mingzhu Jiang
- CAS Center for Excellence in Regional Atmospheric Environment, and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Chen
- University of Chinese Academy of Sciences, Beijing, 100049, China; Xiamen Institute of Rare-Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian, 361021, China
| | - Wenjian Xu
- CAS Center for Excellence in Regional Atmospheric Environment, and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Hongpeng Jia
- CAS Center for Excellence in Regional Atmospheric Environment, and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
39
|
Abstract
As a byproduct of emerging as one of the world’s key producers of pharmaceuticals, China is now challenged by the emission of harmful pharmaceutical VOCs. In this review, the catalogue and volume of VOCs emitted by the pharmaceutical industry in China was introduced. The commonly used VOC removal processes and technologies was recommended by some typical examples. The progress of catalytic combustion, photocatalytic oxidation, non-thermal plasma, and electron beam treatment were presented, especially the development of catalysts. The advantages and shortages of these technologies in recent years were discussed and analyzed. Lastly, the development of VOCs elimination technologies and the most promising technology were discussed.
Collapse
|
40
|
|
41
|
Ding J, Yang Y, Liu J, Wang Z. Catalytic reaction mechanism of formaldehyde oxidation by oxygen species over Pt/TiO 2 catalyst. CHEMOSPHERE 2020; 248:125980. [PMID: 32004886 DOI: 10.1016/j.chemosphere.2020.125980] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/22/2019] [Accepted: 01/19/2020] [Indexed: 06/10/2023]
Abstract
Theoretical calculations based on density functional theory (DFT) were employed to uncover the molecular-level oxidation mechanism of HCHO over Pt/TiO2 surface. All the three possible reaction mechanisms including Eley-Rideal mechanism, Langmuir-Hinshelwood mechanism and Mars-Van Krevelen mechanism were deeply investigated to determine the primary channel of HCHO oxidation on Pt/TiO2 catalyst. The adsorption energies and geometries show that HCHO and O2 are chemically adsorbed on Pt and Ti sites of the Pt/TiO2 catalyst surface, respectively. The adsorption energy of O2 (-141.91 kJ/mol) is higher than that of HCHO (-122.03 kJ/mol). HCHO oxidation reaction mainly occurs through the Eley-Rideal mechanism: gaseous HCHO reacts with activated O produced from the dissociation reaction of molecular oxygen on Pt/TiO2 surface by comparing the three possible mechanisms. HCHO oxidation reaction prefers the pathway of HCHO → H2CO2 → HCO2 → CO2. In the whole HCHO oxidation reaction, the elementary reaction of HCO2 dehydrogenation presents the highest activation energy barrier of 230.45 kJ/mol. Therefore, HCO2 dehydrogenation is recognized as the rate-determining step. The proposed skeletal reaction scheme can be used to well understand the microcosmic reaction process of HCHO oxidation on Pt/TiO2 catalyst.
Collapse
Affiliation(s)
- Junyan Ding
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yingju Yang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jing Liu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Zhen Wang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
42
|
Vainer BG. Infrared Thermography as a Powerful, Versatile, and Elegant Research Tool in Chemistry: Principles and Application to Catalysis and Adsorption. Chempluschem 2020; 85:1438-1454. [PMID: 32468712 DOI: 10.1002/cplu.202000202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/26/2020] [Indexed: 11/07/2022]
Abstract
In this Review, diverse chemical problems that have been approached by means of infrared thermography (IRT) are covered in depth. Moreover, some novel steps forward in this field are made, described and discussed. Namely, the latest-generation IRT performance capabilities are harnessed in full; the initial phase of catalytic CO oxidation (called "fast ignition") is presented at the 0.01 s temporal resolution; at the same resolution, the thermal manifestation of the adsorption-desorption wave propagation after the gaseous reactant pulsed (0.6 s) wetting is exhibited. Furthermore, a radical difference in the thermal behavior of differently calcined γ-Al2 O3 supported Au catalysts, which underwent successive H2 O and CO attacks, is demonstrated, and the generally accepted fact that the catalyst temperature reflects the catalytic activity is validated experimentally. It is shown that latest-generation IRT may serve as unique and highly informative research tool in chemistry.
Collapse
Affiliation(s)
- Boris G Vainer
- Novosibirsk State University, Physical Department, 2 Pirogova str., Novosibirsk, 630090, Russia.,Rzhanov Institute of Semiconductor Physics SB RAS, Physical Bases of Photoelectronics Department, 13 Lavrentyev av., Novosibirsk, 630090, Russia
| |
Collapse
|
43
|
Zhang C, Liu G, Wu P, Zeng G, Sun Y. Complete Formaldehyde Removal over 3D Structured Na
1.1
Mn
4
O
8
@Mn
5
O
8
Biphasic‐Crystals. ChemCatChem 2020. [DOI: 10.1002/cctc.202000449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chunlei Zhang
- Institute of Nanochemistry and NanobiologySchool of Environmental and Chemical EngineeringShanghai University 99 Shangda Road Shanghai 200444 P. R. China
- CAS Key Laboratory of Low-carbon Conversion Science and EngineeringShanghai Advanced Research InstituteChinese Academy of Sciences 100 Haike Road Shanghai 201210 P. R. China
| | - Guojuan Liu
- CAS Key Laboratory of Low-carbon Conversion Science and EngineeringShanghai Advanced Research InstituteChinese Academy of Sciences 100 Haike Road Shanghai 201210 P. R. China
| | - Ping Wu
- CAS Key Laboratory of Low-carbon Conversion Science and EngineeringShanghai Advanced Research InstituteChinese Academy of Sciences 100 Haike Road Shanghai 201210 P. R. China
| | - Gaofeng Zeng
- CAS Key Laboratory of Low-carbon Conversion Science and EngineeringShanghai Advanced Research InstituteChinese Academy of Sciences 100 Haike Road Shanghai 201210 P. R. China
- School of Chemical SciencesUniversity of Chinese Academy of Sciences 19 A Yuquan Road Beijing 100049 P. R. China
| | - Yuhan Sun
- CAS Key Laboratory of Low-carbon Conversion Science and EngineeringShanghai Advanced Research InstituteChinese Academy of Sciences 100 Haike Road Shanghai 201210 P. R. China
- School of Chemical SciencesUniversity of Chinese Academy of Sciences 19 A Yuquan Road Beijing 100049 P. R. China
| |
Collapse
|
44
|
Liu Z, Niu J, Long W, Cui B, Song K, Dong F, Xu D. Highly Efficient MnO 2/AlOOH Composite Catalyst for Indoor Low-Concentration Formaldehyde Removal at Room Temperature. Inorg Chem 2020; 59:7335-7343. [PMID: 32356983 DOI: 10.1021/acs.inorgchem.0c00852] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Indoor formaldehyde from substandard furniture and decorative materials seriously endangers human health. How to remove effectively indoor formaldehyde with low concentration at room temperature is a challenging problem. Using a MnO2/AlOOH composite by the MnO2 modification as a catalyst provides an effective approach to solve this challenge. Here, a new type of MnO2/AlOOH composite catalyst with high ability to remove indoor low-concentration formaldehyde was prepared by redox reaction at room temperature. A MnO2/AlOOH composite with a homogeneous dispersion of MnO2 has high specific surface area and a large amount of surface hydroxyl (-OH) which plays a major role in the adsorption of formaldehyde. A partially crystalline structure was observed in the composite, which contains multivalent Mn ions and a large number of vacancy defects. The surface -OH of composite shows strong oxidation activity through the charge exchange of multivalent Mn ions and vacancy defects. The composite has a higher ability to remove indoor low-concentration formaldehyde compared to the birnessite MnO2 at room temperature. This study proposes a new idea for the improvement of catalytic performance in the structure and composition of the catalyst.
Collapse
Affiliation(s)
- Zhiyuan Liu
- Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Anhui University of Technology, Ministry of Education, Ma'anshan 243002, China.,Key Laboratory of Metallurgical Emission Reduction and Resources Recycling, Anhui University of Technology, Ministry of Education, 243002 Ma'anshan, China
| | - Jingpeng Niu
- Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Anhui University of Technology, Ministry of Education, Ma'anshan 243002, China.,Key Laboratory of Metallurgical Emission Reduction and Resources Recycling, Anhui University of Technology, Ministry of Education, 243002 Ma'anshan, China
| | - Weimin Long
- Zhengzhou Research Institute of Mechanical Engineering, Zhengzhou 450001, China
| | - Bing Cui
- Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Anhui University of Technology, Ministry of Education, Ma'anshan 243002, China.,Key Laboratory of Metallurgical Emission Reduction and Resources Recycling, Anhui University of Technology, Ministry of Education, 243002 Ma'anshan, China
| | - Kun Song
- Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Anhui University of Technology, Ministry of Education, Ma'anshan 243002, China.,Key Laboratory of Metallurgical Emission Reduction and Resources Recycling, Anhui University of Technology, Ministry of Education, 243002 Ma'anshan, China
| | - Fan Dong
- Research Center for Environmental Science and Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Dong Xu
- Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Anhui University of Technology, Ministry of Education, Ma'anshan 243002, China.,Key Laboratory of Metallurgical Emission Reduction and Resources Recycling, Anhui University of Technology, Ministry of Education, 243002 Ma'anshan, China
| |
Collapse
|
45
|
Comparison of the Performance of Au, Pt and Rh Nanoparticles Supported on Mn/Alkali Titanate Nanotubes in Formaldehyde Oxidation at Room Temperature. Catal Letters 2020. [DOI: 10.1007/s10562-020-03254-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
46
|
Li K, Ji J, Huang H, He M. Efficient activation of Pd/CeO 2 catalyst by non-thermal plasma for complete oxidation of indoor formaldehyde at room temperature. CHEMOSPHERE 2020; 246:125762. [PMID: 31896012 DOI: 10.1016/j.chemosphere.2019.125762] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 12/02/2019] [Accepted: 12/25/2019] [Indexed: 06/10/2023]
Abstract
Formaldehyde is a typical indoor air pollutant and its removal is essential to protect human health and meet environmental regulations. Efficient activation of Pd/CeO2 catalyst by non-thermal plasma was investigated to achieve complete oxidation of formaldehyde at room temperature. The catalyst exhibited better activity and stability than conventional thermal reduced sample. Its HCHO conversion to CO2 kept at over 80% during 300 min test at a gas hourly space velocity of 150, 000 mL/g/h and HCHO concentration of 100 ppm. While the conversion dropped from 70% to 50% within 300 min test for the sample reduced at 300 °C. Compared with thermal reduced catalyst, plasma reduced sample exhibited more abundant surface active oxygen species, smaller palladium particle size and narrower particle size distribution. Moreover, palladium particles were partial covered by ceria layer for thermal reduced sample. Although strong interaction between palladium and ceria could be formed, the loss of metallic palladium occurs and hence the oxygen activation and mobility abilities are blocked. In situ DRIFTs results suggested that the intermediates over Pd/CeO2 catalyst were mainly formate, dioxymethylene and polyoxymethylene species, and the formate oxidation into CO2 process was highly promoted in the presence of water.
Collapse
Affiliation(s)
- Kai Li
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China; Guangdong Indoor Air Pollution Control Engineering Research Center, Guangzhou, 510006, China
| | - Jian Ji
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China; Guangdong Indoor Air Pollution Control Engineering Research Center, Guangzhou, 510006, China
| | - Haibao Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China; Guangdong Indoor Air Pollution Control Engineering Research Center, Guangzhou, 510006, China.
| | - Miao He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
47
|
Wang X, Rui Z, Ji H. DFT study of formaldehyde oxidation on silver cluster by active oxygen and hydroxyl groups: Mechanism comparison and synergistic effect. Catal Today 2020. [DOI: 10.1016/j.cattod.2018.06.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
48
|
Deng J, Song W, Jing M, Yu T, Zhao Z, Xu C, Liu J. A DFT and microkinetic study of HCHO catalytic oxidation mechanism over Pd/Co3O4 catalysts: The effect of metal-oxide interface. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.02.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
49
|
Zhang L, Jiang Y, Chen BB, Shi C, Li Y, Wang C, Han S, Pan S, Wang L, Meng X, Xiao FS. Exceptional activity for formaldehyde combustion using siliceous Beta zeolite as a catalyst support. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.01.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
de Oliveira Rocha K, Marques CMP, Bueno JMC. Effect of Au doping of Ni/Al2O3 catalysts used in steam reforming of methane: Mechanism, apparent activation energy, and compensation effect. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.06.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|