1
|
van der Ham MJM, Creus J, Bitter JH, Koper MTM, Pescarmona PP. Electrochemical and Non-Electrochemical Pathways in the Electrocatalytic Oxidation of Monosaccharides and Related Sugar Alcohols into Valuable Products. Chem Rev 2024; 124:11915-11961. [PMID: 39480753 PMCID: PMC11565578 DOI: 10.1021/acs.chemrev.4c00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/09/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024]
Abstract
In this contribution, we review the electrochemical upgrading of saccharides (e.g., glucose) and sugar alcohols (e.g., glycerol) on metal and metal-oxide electrodes by drawing conclusions on common trends and differences between these two important classes of biobased compounds. For this purpose, we critically review the literature on the electrocatalytic oxidation of saccharides and sugar alcohols, seeking trends in the effect of reaction conditions and electrocatalyst design on the selectivity for the oxidation of specific functional groups toward value-added compounds. Importantly, we highlight and discuss the competition between electrochemical and non-electrochemical pathways. This is a crucial and yet often neglected aspect that should be taken into account and optimized for achieving the efficient electrocatalytic conversion of monosaccharides and related sugar alcohols into valuable products, which is a target of growing interest in the context of the electrification of the chemical industry combined with the utilization of renewable feedstock.
Collapse
Affiliation(s)
- Matthijs
P. J. M. van der Ham
- Biobased
Chemistry and Technology, Wageningen Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Jordi Creus
- Chemical
Engineering Group, Engineering and Technology Institute Groningen
(ENTEG), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- TNO, Westerduinweg 3, 1755 LE Petten, The Netherlands
| | - Johannes H. Bitter
- Biobased
Chemistry and Technology, Wageningen Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Marc T. M. Koper
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Paolo P. Pescarmona
- Chemical
Engineering Group, Engineering and Technology Institute Groningen
(ENTEG), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
2
|
Ma G, Jiang N, Zhang Y, Song D, Qiao B, Xu Z, Zhao S, Liang Z. Buffering Donor Shuttles in Proton-Coupled Electron Transfer Kinetics for Electrochemical Hydrogenation of Hydroxyacetone to Propylene Glycol. J Am Chem Soc 2024; 146:23194-23204. [PMID: 39115467 DOI: 10.1021/jacs.4c05446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Electrochemical hydrogenation reactions demand rapid proton-coupled electron transfer at the electrode surface, the kinetics of which depend closely on pH. Buffer electrolytes are extensively employed to regulate pH over a wide range. However, the specific role of buffer species should be taken into account when interpreting the intrinsic pH dependence, which is easily overlooked in the current research. Herein, we report the electrochemical hydrogenation of hydroxyacetone, derived from glycerol feedstock, to propylene glycol with a faradaic efficiency of 56 ± 5% on a polycrystalline Cu electrode. The reaction activities are comparable in citrate, phosphate, and borate buffer electrolytes, encompassing different buffer identities and pH. The electrokinetic profile reveals that citrate is a site-blocking adsorbate on the Cu surface, thereby decreasing buffer concentration and increasing pH will enhance the reaction rate; phosphate is an explicit proton donor, which promotes the interfacial rate by increasing buffer concentration and decreasing pH, while borate is an innocent buffer, which can be used to investigate the intrinsic pH effect. Combined with in situ SEIRAS, we demonstrate that water is the primary proton source in citrate and borate electrolytes, reiterating the rationality of the proposed mechanism based on the microkinetic modeling. Our results emphasize the intrinsic complexity of the buffer system on the kinetic activity for electrocatalysis. It calls for special care when we diagnose the mechanistic pathway in buffer electrolytes convoluted by different buffer identities and pH.
Collapse
Affiliation(s)
- Guoquan Ma
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - Na Jiang
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - Yu Zhang
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - Dandan Song
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - Bo Qiao
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - Zheng Xu
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - Suling Zhao
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - Zhiqin Liang
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, P. R. China
- Tangshan Research Institute of Beijing Jiaotong University, Xinhua Xi Street 46, Tangshan, Hebei 063000, P. R. China
| |
Collapse
|
3
|
Gidi L, Amalraj J, Tenreiro C, Ramírez G. Recent progress, trends, and new challenges in the electrochemical production of green hydrogen coupled to selective electrooxidation of 5-hydroxymethylfurfural (HMF). RSC Adv 2023; 13:28307-28336. [PMID: 37753399 PMCID: PMC10519153 DOI: 10.1039/d3ra05623f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
The production of clean electrical energy and the correct use of waste materials are two topics that currently concern humanity. In order to face both problems, extensive work has been done on the electrolytic production of green H2 coupled with the electrooxidative upgrading of biomass platform molecules. 5-Hydroxymethylfurfural (HMF) is obtained from forest waste biomass and can be selectively oxidized to 2,5-furandicarboxylic acid (FDCA) by electrochemical pathways. FDCA is an attractive precursor to polyethylene furanoate (PEF), with the potential to replace petroleum-based polyethylene terephthalate (PET). An integrated electrochemical system can simultaneously produce H2 and FDCA at a lower energy cost than that required for electrolytic water splitting. Here, the benefits of the electrochemical production of H2 and FDCA over other production methods are presented, as well as the innovative applications of each reaction product and the advantages of carrying out both reactions in a coupled system. The recently reported progress is disclosed, through an exploration of electrocatalyst materials used in simultaneous production, including the use of nickel foams (NF) as modification substrates, noble and non-noble metals, metal non-oxides, metal oxides, spinel oxides and the introduction of oxygen vacancies. Based on the latest trends, the next challenges associated with its large-scale production are proposed for its implementation in the industrial world. This work can offer a guideline for the detailed understanding of the electrooxidation of HMF towards FDCA with the production of H2, as well as the design of advanced electrocatalysts for the sustainable use of renewable resources.
Collapse
Affiliation(s)
- Leyla Gidi
- Laboratory of Material Science, Chemistry Institute of Natural Resources, Universidad de Talca P.O. Box 747 Talca 3460000 Chile
| | - John Amalraj
- Laboratory of Material Science, Chemistry Institute of Natural Resources, Universidad de Talca P.O. Box 747 Talca 3460000 Chile
| | - Claudio Tenreiro
- Industrial Technologies Department, Faculty of Engineering, Universidad de Talca Curicó 3340000 Chile
| | - Galo Ramírez
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile Av. Vicuña Mackenna 4860 Santiago 7820436 Chile
- Millenium Institute on Green Ammonia as Energy Vector (MIGA) Av. Vicuña Mackenna 4860, Macul Santiago 7820436 Chile
| |
Collapse
|
4
|
Bondue CJ, Spallek M, Sobota L, Tschulik K. Electrochemical Aldehyde Oxidation at Gold Electrodes: gem-Diol, non-Hydrated Aldehyde, and Diolate as Electroactive Species. CHEMSUSCHEM 2023; 16:e202300685. [PMID: 37477393 DOI: 10.1002/cssc.202300685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/22/2023]
Abstract
To date the electroactive species of selective aldehyde oxidation to carboxylates at gold electrodes is usually assumed to be the diolate. It forms with high concentration only in very alkaline electrolytes, when OH- binds to the carbonyl carbon atom. Accordingly, the electrochemical upgrading of biomass-derived aldehydes to carboxylates is believed to be limited to very alkaline electrolytes at many electrode materials. However, OH- -induced aldehyde decomposition in these electrolytes prevents application of electrochemical aldehyde oxidation for the sustainable upgrading of biomass to value-added chemicals at industrial scale. Here, we demonstrate the successful oxidation of aliphatic aldehydes at a rotating gold electrode at pH 12, where only 1 % of the aldehyde resides as the diolate species. This concentration is too small to account for the observed current, which shows that also other aldehyde species (i. e., the geminal diol and the non-hydrated aldehyde) are electroactive. This insight allows developing strategies to omit aldehyde decomposition while achieving high current densities for the selective aldehyde oxidation, making its future industrial application viable.
Collapse
Affiliation(s)
- Christoph J Bondue
- Chair of Analytical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, 44801, Germany
| | - Marius Spallek
- Chair of Analytical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, 44801, Germany
| | - Lennart Sobota
- Chair of Analytical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, 44801, Germany
| | - Kristina Tschulik
- Chair of Analytical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, 44801, Germany
- Max-Planck-Institut für Eisenforschung GmbH, 40237, Düsseldorf, Germany
| |
Collapse
|
5
|
Wei K, Lin H, Zhao X, Zhao Z, Marinkovic N, Morales M, Huang Z, Perlmutter L, Guan H, Harris C, Chi M, Lu G, Sasaki K, Sun S. Au/Pt Bimetallic Nanowires with Stepped Pt Sites for Enhanced C-C Cleavage in C2+ Alcohol Electro-oxidation Reactions. J Am Chem Soc 2023; 145:19076-19085. [PMID: 37606196 DOI: 10.1021/jacs.3c07027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Efficient C-C bond cleavage and oxidation of alcohols to CO2 is the key to developing highly efficient alcohol fuel cells for renewable energy applications. In this work, we report the synthesis of core/shell Au/Pt nanowires (NWs) with stepped Pt clusters deposited along the ultrathin (2.3 nm) stepped Au NWs as an active catalyst to effectively oxidize alcohols to CO2. The catalytic oxidation reaction is dependent on the Au/Pt ratios, and the Au1.0/Pt0.2 NWs have the largest percentage (∼75%) of stepped Au/Pt sites and show the highest activity for ethanol electro-oxidation, reaching an unprecedented 196.9 A/mgPt (32.5 A/mgPt+Au). This NW catalyst is also active in catalyzing the oxidation of other primary alcohols, such as methanol, n-propanol, and ethylene glycol. In situ X-ray absorption spectroscopy and infrared spectroscopy are used to characterize the catalyst structure and to identify key reaction intermediates, providing concrete evidence that the synergy between the low-coordinated Pt sites and the stepped Au NWs is essential to catalyze the alcohol oxidation reaction, which is further supported by DFT calculations that the C-C bond cleavage is indeed enhanced on the undercoordinated Pt-Au surface. Our study provides important evidence that a core/shell structure with stepped core/shell sites is essential to enhance electrochemical oxidation of alcohols and will also be central to understanding electro-oxidation reactions and to the future development of highly efficient direct alcohol fuel cells for renewable energy applications.
Collapse
Affiliation(s)
- Kecheng Wei
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Honghong Lin
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Xueru Zhao
- Department of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Zhonglong Zhao
- School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Nebojsa Marinkovic
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Michael Morales
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Zhennan Huang
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Laura Perlmutter
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Huanqin Guan
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Cooro Harris
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Miaofang Chi
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Gang Lu
- Department of Physics and Astronomy, California State University Northridge, Northridge, California 91330, United States
| | - Kotaro Sasaki
- Department of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Shouheng Sun
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
6
|
Zhu X, Huang J, Eikerling M. pH Effects in a Model Electrocatalytic Reaction Disentangled. JACS AU 2023; 3:1052-1064. [PMID: 37124300 PMCID: PMC10131201 DOI: 10.1021/jacsau.2c00662] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 05/03/2023]
Abstract
Varying the solution pH not only changes the reactant concentrations in bulk solution but also the local reaction environment (LRE) that is shaped furthermore by macroscopic mass transport and microscopic electric double layer (EDL) effects. Understanding ubiquitous pH effects in electrocatalysis requires disentangling these interwoven factors, which is a difficult, if not impossible, task without physical modeling. Herein, we demonstrate how a hierarchical model that integrates microkinetics, double-layer charging, and macroscopic mass transport can help understand pH effects of the formic acid oxidation reaction (FAOR). In terms of the relation between the peak activity and the solution pH, intrinsic pH effects without consideration of changes in the LRE would lead to a bell-shaped curve with a peak at pH = 6. Adding only macroscopic mass transport, we can already reproduce qualitatively the experimentally observed trapezoidal shape with a plateau between pH 5 and 10 in perchlorate and sulfate solutions. A quantitative agreement with experimental data requires consideration of EDL effects beyond Frumkin correlations. Specifically, the peculiar nonmonotonic surface charging relation affects the free energies of adsorbed intermediates. We further discuss pH effects of FAOR in phosphate and chloride-containing solutions, for which anion adsorption becomes important. This study underpins the importance of a full consideration of multiple interrelated factors for the interpretation of pH effects in electrocatalysis.
Collapse
Affiliation(s)
- Xinwei Zhu
- Theory
and Computation of Energy Materials (IEK-13), Institute of Energy
and Climate Research, Forschungszentrum
Jülich GmbH, 52425 Jülich, Germany
- Chair
of Theory and Computation of Energy Materials, Faculty of Georesources
and Materials Engineering, RWTH Aachen University, 52062 Aachen, Germany
| | - Jun Huang
- Theory
and Computation of Energy Materials (IEK-13), Institute of Energy
and Climate Research, Forschungszentrum
Jülich GmbH, 52425 Jülich, Germany
| | - Michael Eikerling
- Theory
and Computation of Energy Materials (IEK-13), Institute of Energy
and Climate Research, Forschungszentrum
Jülich GmbH, 52425 Jülich, Germany
- Chair
of Theory and Computation of Energy Materials, Faculty of Georesources
and Materials Engineering, RWTH Aachen University, 52062 Aachen, Germany
| |
Collapse
|
7
|
Abstract
Adsorption energy (AE) of reactive intermediate is currently the most important descriptor for electrochemical reactions (e.g., water electrolysis, hydrogen fuel cell, electrochemical nitrogen fixation, electrochemical carbon dioxide reduction, etc.), which can bridge the gap between catalyst's structure and activity. Tracing the history and evolution of AE can help to understand electrocatalysis and design optimal electrocatalysts. Focusing on oxygen electrocatalysis, this review aims to provide a comprehensive introduction on how AE is selected as the activity descriptor, the intrinsic and empirical relationships related to AE, how AE links the structure and electrocatalytic performance, the approaches to obtain AE, the strategies to improve catalytic activity by modulating AE, the extrinsic influences on AE from the environment, and the methods in circumventing linear scaling relations of AE. An outlook is provided at the end with emphasis on possible future investigation related to the obstacles existing between adsorption energy and electrocatalytic performance.
Collapse
Affiliation(s)
- Junming Zhang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Hong Bin Yang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Daojin Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.,Department of Electrical and Computer Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4, Canada
| | - Bin Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| |
Collapse
|
8
|
Kamyabi MA, Jadali S, Alizadeh T. Ethanol Electrooxidation on Nickel Foam Arrayed with Templated PdSn; From Catalyst Fabrication to Electrooxidation Dominance Route. ChemElectroChem 2022. [DOI: 10.1002/celc.202200914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Mohammad Ali Kamyabi
- Electroanalytical Chemistry Laboratory Department of Chemistry Faculty of Science University of Zanjan 45371-38791 Zanjan Iran
| | - Salma Jadali
- Electroanalytical Chemistry Laboratory Department of Chemistry Faculty of Science University of Zanjan 45371-38791 Zanjan Iran
| | - Taher Alizadeh
- Department of Analytical Chemistry Faculty of Chemistry University College of Science University of Tehran P.O. Box 14155–6455 Tehran Iran
| |
Collapse
|
9
|
In-situ FTIR spectroscopy investigation of carbon-supported PdAuNi electrocatalysts for ethanol oxidation. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Guo M, Lu X, Xiong J, Zhang R, Li X, Qiao Y, Ji N, Yu Z. Alloy-Driven Efficient Electrocatalytic Oxidation of Biomass-Derived 5-Hydroxymethylfurfural towards 2,5-Furandicarboxylic Acid: A Review. CHEMSUSCHEM 2022; 15:e202201074. [PMID: 35790081 DOI: 10.1002/cssc.202201074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/02/2022] [Indexed: 06/15/2023]
Abstract
In recent years, electrocatalysis was progressively developed to facilitate the selective oxidation of biomass-derived 5-hydroxymethylfurfural (HMF) towards the value-added chemical 2,5-furandicarboxylic acid (FDCA). Among reported electrocatalysts, alloy materials have demonstrated superior electrocatalytic properties due to their tunable electronic and geometric properties. However, a specific discussion of the potential impacts of alloy structures on the electrocatalytic HMF oxidation performance has not yet been presented in available Reviews. In this regard, this Review introduces the most recent perspectives on the alloy-driven electrocatalysis for HMF oxidation towards FDCA, including oxidation mechanism, alloy nanostructure modulation, and external conditions control. Particularly, modulation strategies for electronic and geometric structures of alloy electrocatalysts have been discussed. Challenges and suggestions are also provided for the rational design of alloy electrocatalysts. The viewpoints presented herein are anticipated to potentially contribute to a further development of alloy-driven electrocatalytic oxidation of HMF towards FDCA and to help boost a more sustainable and efficient biomass refining system.
Collapse
Affiliation(s)
- Mengyan Guo
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P.R. China
| | - Xuebin Lu
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P.R. China
- School of Science, Tibet University, Lhasa, 850000, P.R. China
| | - Jian Xiong
- School of Science, Tibet University, Lhasa, 850000, P.R. China
| | - Rui Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, P.R. China
| | - Xiaoyun Li
- School of Agriculture, Sun Yat-sen University Guangzhou, Guangdong, 510275, P.R. China
| | - Yina Qiao
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, P.R. China
| | - Na Ji
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P.R. China
| | - Zhihao Yu
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P.R. China
| |
Collapse
|
11
|
Forcherio GT, Ostovar B, Boltersdorf J, Cai YY, Leff AC, Grew KN, Lundgren CA, Link S, Baker DR. Single-Particle Insights into Plasmonic Hot Carrier Separation Augmenting Photoelectrochemical Ethanol Oxidation with Photocatalytically Synthesized Pd-Au Bimetallic Nanorods. ACS NANO 2022; 16:12377-12389. [PMID: 35894585 DOI: 10.1021/acsnano.2c03549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Understanding the nature of hot carrier pathways following surface plasmon excitation of heterometallic nanostructures and their mechanistic prevalence during photoelectrochemical oxidation of complex hydrocarbons, such as ethanol, remains challenging. This work studies the fate of carriers from Au nanorods before and after the presence of reductively photodeposited Pd at the single-particle level using scattering and emission spectroscopy, along with ensemble photoelectrochemical methods. A sub-2 nm epitaxial Pd0 shell was reductively grown onto colloidal Au nanorods via hot carriers generated from surface plasmon resonance excitation in the presence of [PdCl4]2-. These bimetallic Pd-Au nanorod architectures exhibited 14% quenched emission quantum yields and 9% augmented plasmon damping determined from their scattering spectra compared to the bare Au nanorods, consistent with injection/separation of intraband hot carriers into the Pd. Absorbed photon-to-current efficiency in photoelectrochemical ethanol oxidation was enhanced 50× from 0.00034% to 0.017% due to the photodeposited Pd. Photocurrent during ethanol oxidation improved 13× under solar-simulated AM1.5G and 40× for surface plasmon resonance-targeted irradiation conditions after photodepositing Pd, consistent with enhanced participation of intraband-excited sp-band holes and desorption of ethanol oxidation reaction intermediates owing to photothermal effects.
Collapse
Affiliation(s)
- Gregory T Forcherio
- U.S. Army Combat Capabilities Development Command - Army Research Laboratory, Adelphi, Maryland 20783 United States
- Electro-Optic Technology Division, Naval Surface Warfare Center, Crane, Indiana 47522 United States
| | | | - Jonathan Boltersdorf
- U.S. Army Combat Capabilities Development Command - Army Research Laboratory, Adelphi, Maryland 20783 United States
| | | | - Asher C Leff
- U.S. Army Combat Capabilities Development Command - Army Research Laboratory, Adelphi, Maryland 20783 United States
- General Technical Services, Adelphi, Maryland 20783, United States
| | - Kyle N Grew
- U.S. Army Combat Capabilities Development Command - Army Research Laboratory, Adelphi, Maryland 20783 United States
| | - Cynthia A Lundgren
- U.S. Army Combat Capabilities Development Command - Army Research Laboratory, Adelphi, Maryland 20783 United States
| | | | - David R Baker
- U.S. Army Combat Capabilities Development Command - Army Research Laboratory, Adelphi, Maryland 20783 United States
| |
Collapse
|
12
|
Clímaco FR, Almeida CV, Aristides SS, Eguiluz KI, Salazar-Banda GR. Influence of the composition and morphology of PdNiFe/C nanocatalysts toward ethanol oxidation. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Rodrigues MP, Dourado AH, Krischer K, Torresi SIC. Gold–rhodium nanoflowers for the plasmon enhanced ethanol electrooxidation under visible light for tuning the activity and selectivity. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Coronas M, Holade Y, Cornu D. Review of the Electrospinning Process and the Electro-Conversion of 5-Hydroxymethylfurfural (HMF) into Added-Value Chemicals. MATERIALS 2022; 15:ma15124336. [PMID: 35744395 PMCID: PMC9229014 DOI: 10.3390/ma15124336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/12/2022] [Accepted: 06/17/2022] [Indexed: 11/23/2022]
Abstract
Electrochemical converters (electrolyzers, fuel cells, and batteries) have gained prominence during the last decade for the unavoidable energy transition and the sustainable synthesis of platform chemicals. One of the key elements of these systems is the electrode material on which the electrochemical reactions occur, and therefore its design will impact their performance. This review focuses on the electrospinning method by examining a number of features of experimental conditions. Electrospinning is a fiber-spinning technology used to produce three-dimensional and ultrafine fibers with tunable diameters and lengths. The thermal treatment and the different analyses are discussed to understand the changes in the polymer to create usable electrode materials. Electrospun fibers have unique properties such as high surface area, high porosity, tunable surface properties, and low cost, among others. Furthermore, a little introduction to the 5-hydroxymethylfurfural (HMF) electrooxidation coupled to H2 production was included to show the benefit of upgrading biomass derivates in electrolyzers. Indeed, environmental and geopolitical constraints lead to shifts towards organic/inorganic electrosynthesis, which allows for one to dispense with polluting, toxic and expensive reagents. The electrooxidation of HMF instead of water (OER, oxygen evolution reaction) in an electrolyzer can be elegantly controlled to electro-synthesize added-value organic chemicals while lowering the required energy for CO2-free H2 production.
Collapse
|
15
|
Yeh PH, Venkatesan S, Chen HC, Lee YL. In-Situ surface enhanced infrared absorption spectroscopy study of electrocatalytic oxidation of ethanol on Platinum/Gold surface. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120902. [PMID: 35074672 DOI: 10.1016/j.saa.2022.120902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
The behavior of ethanol oxidation reaction on composite electrodes prepared by deposition platinum on a gold surface (Pt/Au) were studied by cyclic voltammetry and surface enhanced infrared absorption spectroscopy (SEIRAS) analysis. The results show that the Pt electrode has high oxidation activity and significant poison behavior; on the contrary, the Au electrode demonstrates low activity without a poison peak. The SEIRAS analyses reveal that both carbon monoxide (CO) and carbon dioxide (CO2) appear during anode sweeping, and the CO peak density decreases with increasing potential and finally is eliminated. During the cathodic scanning, the CO peak reappears, and the peak intensity increases with scanning cycles, demonstrating a high poison behavior and the C1 reaction route on Pt. On the Au electrode, CO2 and CO peaks were not observed; instead, an acetic acid peak appeared, indicating a C2 reaction path. For the Pt/Au composited electrodes, the electrochemical activities of the electrodes, as well as their poison behavior, increased with the deposition amount of Pt. However, the intensities of the poison peaks are smaller than those of oxidation ones; therefore, a higher tolerance to the CO poison can be achieved. For the 2 m-Pt/Au composite electrode, the activity is close to that of pure Pt, but the poison tolerance is 3 times the value of Pt.
Collapse
Affiliation(s)
- Po-Hsuan Yeh
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | | | - Hsiao-Chi Chen
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yuh-Lang Lee
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan; Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
16
|
Some features of alcohols electrooxidation process on Pd, Rh and PdRh catalysts. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Wang C, Bukhvalov D, Goh MC, Du Y, Yang X. Hierarchical AgAu alloy nanostructures for highly efficient electrocatalytic ethanol oxidation. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63895-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Nitish Govindarajan
- Catalysis Theory Center, Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Aoni Xu
- Catalysis Theory Center, Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Karen Chan
- Catalysis Theory Center, Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
19
|
Govindarajan N, Kastlunger G, Heenen HH, Chan K. Improving the intrinsic activity of electrocatalysts for sustainable energy conversion: where are we and where can we go? Chem Sci 2021; 13:14-26. [PMID: 35059146 PMCID: PMC8694373 DOI: 10.1039/d1sc04775b] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/14/2021] [Indexed: 12/19/2022] Open
Abstract
As we are in the midst of a climate crisis, there is an urgent need to transition to the sustainable production of fuels and chemicals. A promising strategy towards this transition is to use renewable energy for the electrochemical conversion of abundant molecules present in the earth's atmosphere such as H2O, O2, N2 and CO2, to synthetic fuels and chemicals. A cornerstone to this strategy is the development of earth abundant electrocatalysts with high intrinsic activity towards the desired products. In this perspective, we discuss the importance and challenges involved in the estimation of intrinsic activity both from the experimental and theoretical front. Through a thorough analysis of published data, we find that only modest improvements in intrinsic activity of electrocatalysts have been achieved in the past two decades which necessitates the need for a paradigm shift in electrocatalyst design. To this end, we highlight opportunities offered by tuning three components of the electrochemical environment: cations, buffering anions and the electrolyte pH. These components can significantly alter catalytic activity as demonstrated using several examples, and bring us a step closer towards complete system level optimization of electrochemical routes to sustainable energy conversion.
Collapse
Affiliation(s)
- Nitish Govindarajan
- Catalysis Theory Center, Department of Physics, Technical University of Denmark (DTU) Fysikvej 311 2800 Kgs. Lyngby Denmark
| | - Georg Kastlunger
- Catalysis Theory Center, Department of Physics, Technical University of Denmark (DTU) Fysikvej 311 2800 Kgs. Lyngby Denmark
| | - Hendrik H Heenen
- Catalysis Theory Center, Department of Physics, Technical University of Denmark (DTU) Fysikvej 311 2800 Kgs. Lyngby Denmark .,Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4-6 D-14195 Berlin Germany
| | - Karen Chan
- Catalysis Theory Center, Department of Physics, Technical University of Denmark (DTU) Fysikvej 311 2800 Kgs. Lyngby Denmark
| |
Collapse
|
20
|
Najafishirtari S, Friedel Ortega K, Douthwaite M, Pattisson S, Hutchings GJ, Bondue CJ, Tschulik K, Waffel D, Peng B, Deitermann M, Busser GW, Muhler M, Behrens M. A Perspective on Heterogeneous Catalysts for the Selective Oxidation of Alcohols. Chemistry 2021; 27:16809-16833. [PMID: 34596294 PMCID: PMC9292687 DOI: 10.1002/chem.202102868] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Indexed: 01/15/2023]
Abstract
Selective oxidation of higher alcohols using heterogeneous catalysts is an important reaction in the synthesis of fine chemicals with added value. Though the process for primary alcohol oxidation is industrially established, there is still a lack of fundamental understanding considering the complexity of the catalysts and their dynamics under reaction conditions, especially when higher alcohols and liquid-phase reaction media are involved. Additionally, new materials should be developed offering higher activity, selectivity, and stability. This can be achieved by unraveling the structure-performance correlations of these catalysts under reaction conditions. In this regard, researchers are encouraged to develop more advanced characterization techniques to address the complex interplay between the solid surface, the dissolved reactants, and the solvent. In this mini-review, we report some of the most important approaches taken in the field and give a perspective on how to tackle the complex challenges for different approaches in alcohol oxidation while providing insight into the remaining challenges.
Collapse
Affiliation(s)
- Sharif Najafishirtari
- Faculty of Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenCarl-Benz-Straße 19947057DuisburgGermany
| | - Klaus Friedel Ortega
- Institute of Inorganic ChemistryKiel UniversityMax-Eyth-Straße 224118KielGermany
| | - Mark Douthwaite
- Cardiff Catalysis InstituteCardiff UniversityCF10 3ATCardiffUnited Kingdom
| | - Samuel Pattisson
- Cardiff Catalysis InstituteCardiff UniversityCF10 3ATCardiffUnited Kingdom
| | | | - Christoph J. Bondue
- Faculty of Chemistry and BiochemistryLab. of Electrochemistry & Nanoscale MaterialsRuhr-University BochumUniversitätsstraße. 150, ZEMOS 1.4144780BochumGermany
| | - Kristina Tschulik
- Faculty of Chemistry and BiochemistryLab. of Electrochemistry & Nanoscale MaterialsRuhr-University BochumUniversitätsstraße. 150, ZEMOS 1.4144780BochumGermany
| | - Daniel Waffel
- Faculty of Chemistry and BiochemistryLab. of Industrial ChemistryRuhr-University BochumUniversitätsstraße 150, NBCF 04 / 69044780BochumGermany
| | - Baoxiang Peng
- Faculty of Chemistry and BiochemistryLab. of Industrial ChemistryRuhr-University BochumUniversitätsstraße 150, NBCF 04 / 69044780BochumGermany
| | - Michel Deitermann
- Faculty of Chemistry and BiochemistryLab. of Industrial ChemistryRuhr-University BochumUniversitätsstraße 150, NBCF 04 / 69044780BochumGermany
| | - G. Wilma Busser
- Faculty of Chemistry and BiochemistryLab. of Industrial ChemistryRuhr-University BochumUniversitätsstraße 150, NBCF 04 / 69044780BochumGermany
| | - Martin Muhler
- Faculty of Chemistry and BiochemistryLab. of Industrial ChemistryRuhr-University BochumUniversitätsstraße 150, NBCF 04 / 69044780BochumGermany
| | - Malte Behrens
- Faculty of Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenCarl-Benz-Straße 19947057DuisburgGermany
- Institute of Inorganic ChemistryKiel UniversityMax-Eyth-Straße 224118KielGermany
| |
Collapse
|
21
|
Etim UJ, Bai P, Gazit OM, Zhong Z. Low-Temperature Heterogeneous Oxidation Catalysis and Molecular Oxygen Activation. CATALYSIS REVIEWS 2021. [DOI: 10.1080/01614940.2021.1919044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ubong J. Etim
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong, China
| | - Peng Bai
- College of Chemical Engineering, China University of Petroleum, Qingdao, China
| | - Oz M. Gazit
- Wolfson Faculty of Chemical Engineering, Technion – Israel Institute of Technology, Haifa, Israel
| | - Ziyi Zhong
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong, China
- Technion Israel Institute of Technology (IIT), Haifa, Israel
| |
Collapse
|
22
|
Zhang J, Xu W, Liu Y, Hung SF, Liu W, Lam Z, Tao HB, Yang H, Cai W, Xiao H, Chen H, Liu B. In Situ Precise Tuning of Bimetallic Electronic Effect for Boosting Oxygen Reduction Catalysis. NANO LETTERS 2021; 21:7753-7760. [PMID: 34516143 DOI: 10.1021/acs.nanolett.1c02705] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Tuning intermediate adsorption energy by shifting the d-band center offers a powerful strategy to tailor the reactivity of metal catalysts. Here we report a potential sweep method to grow Pd layer-by-layer on Au with the capability to in situ measure the surface structure through an ethanol oxidation reaction. Spectroscopic characterizations reveal charge-transfer induced valence band restructuring in the Pd overlayer, which shifts the d-band center away from the Fermi level compared to bulk Pd. Precise overlayer control gives the optimal bimetallic surface of two monolayers (ML) Pd on Au, which exhibits more than 370-fold mass activity enhancement in oxygen reduction reaction (at 0.9 V vs. reversible hydrogen electrode) and 40 mV increase in half-wave potential compared to the Pt/C. Tested in a homemade Zn-air battery, the 2-ML-Pd/Au/C exhibits a maximum power density of 296 mW/cm2 and specific activity of 804 mAh/gZn, much higher than Pt/C with the same catalyst loading amount.
Collapse
Affiliation(s)
- Junming Zhang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
- Nanyang Environmental & Water Research Institute (Newri), Interdisciplinary Graduate Program, Graduate School, Nanyang Technological University, Singapore 637141, Singapore
| | - Weichang Xu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Yuan Liu
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Sung-Fu Hung
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Wei Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhenhui Lam
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Hua Bing Tao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Hongbin Yang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Weizheng Cai
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Hai Xiao
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Hongyu Chen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Bin Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
- Nanyang Environmental & Water Research Institute (Newri), Interdisciplinary Graduate Program, Graduate School, Nanyang Technological University, Singapore 637141, Singapore
| |
Collapse
|
23
|
Zhao X, Hu G, Chen GF, Zhang H, Zhang S, Wang H. Comprehensive Understanding of the Thriving Ambient Electrochemical Nitrogen Reduction Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007650. [PMID: 34197001 DOI: 10.1002/adma.202007650] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/01/2021] [Indexed: 05/09/2023]
Abstract
The electrochemical method of combining N2 and H2 O to produce ammonia (i.e., the electrochemical nitrogen reduction reaction [E-NRR]) continues to draw attention as it is both environmentally friendly and well suited for a progressively distributed farm economy. Despite the multitude of recent works on the E-NRR, further progress in this field faces a bottleneck. On the one hand, despite the extensive exploration and trial-and-error evaluation of E-NRR catalysts, no study has stood out to become the stage protagonist. On the other hand, the current level of ammonia production (microgram-scale) is an almost insurmountable obstacle for its qualitative and quantitative determination, hindering the discrimination between true activity and contamination. Herein i) the popular theory and mechanism of the NRR are introduced; ii) a comprehensive summary of the recent progress in the field of the E-NRR and related catalysts is provided; iii) the operational procedures of the E-NRR are addressed, including the acquisition of key metrics, the challenges faced, and the most suitable solutions; iv) the guiding principles and standardized recommendations for the E-NRR are emphasized and future research directions and prospects are provided.
Collapse
Affiliation(s)
- Xue Zhao
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Gao-Feng Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Haibo Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Shusheng Zhang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450000, China
| | - Haihui Wang
- Beijing Key Laboratory of Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
24
|
Li Z, Gao F, Zou B, Wu Z, Zhang Y, Du Y. Core@shell PtAuAg@PtAg Hollow Nanodendrites as Effective Electrocatalysts for Methanol and Ethylene Glycol Oxidation. Inorg Chem 2021; 60:9977-9986. [PMID: 34133159 DOI: 10.1021/acs.inorgchem.1c01254] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pt-based catalysts with core@shell structures are widely used in alcohol oxidations due to their excellent catalytic performance. In this work, we synthesized a series of core@shell PtAuAg@PtAg hollow nanodendrites (HNDs) with different compositions by a simple seed-mediated method. The PtAuAg@PtAg HNDs with a hollow core and dendritic shell exhibit excellent catalytic performance for ethylene glycol oxidation reaction (EGOR) and methanol oxidation reaction (MOR). Among these, Pt38Au29Ag33 HNDs have the highest mass activity (12364.0 mA mgPt-1/3278.0 mA mgPt-1) for EGOR and MOR, which is 4.2 times and 5.3 times higher than that of commercial Pt/C (2941.0 mA mgPt-1/617.6 mA mgPt-1), respectively. More importantly, after successive cyclic voltammetry tests, the retained mass activities of Pt38Au29Ag33 HNDs are 3913.8 mA mgPt-1 and 348.3 mA mgPt-1, which are much higher than that of commercial Pt/C as well. The excellent catalytic performance of PtAuAg@PtAg HNDs can be attributed to the structure of HNDs, which can greatly increase the surface area and active sites, as well as the electronic and synergistic effects among Pt, Au, and Ag. This research may provide new ideas for the development of high-efficiency hollow catalytic materials for EGOR and MOR.
Collapse
Affiliation(s)
- Zhuolin Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Fei Gao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Bin Zou
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Zhengying Wu
- Jiangsu Key Laboratory for Environment Functional Materials, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yangping Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| |
Collapse
|
25
|
Selective electrooxidation of acetaldehyde in aqueous ethanol alkaline solutions on silver-containing electrodes. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Zhang G, Ma Y, Li M, Ren S, Fu X, Huang H, Zheng Y. Crumpled Versus Flat Gold Nanosheets: Temperature-Regulated Synthesis and Their Plasmonic and Catalytic Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4227-4235. [PMID: 33788565 DOI: 10.1021/acs.langmuir.1c00190] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We report a high-yield synthesis of gold (Au) nanosheets with tunable size and surface morphology in the aqueous phase. In particular, crumpled and flat Au nanosheets with a thickness of ∼10 nm could be selectively produced in high purity when the reaction was conducted at room temperature and in an ice-water bath, respectively. Unlike Au nanoplates/nanoprisms in the form of well-defined triangles or hexagons documented in previous studies, the current products exhibit random in-plane branches or holes, together with wavy edges. Strong absorbance in the NIR region was observed for all the Au nanosheet products. When serving as electrocatalysts for the ethanol oxidation reaction, the current products exhibited an enhanced activity and operation stability, as compared to quasi-spherical counterparts.
Collapse
Affiliation(s)
- Gongguo Zhang
- Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong 273115, P. R. China
| | - Yanyun Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Mengfan Li
- School of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Shan Ren
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Xiaowei Fu
- Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong 273115, P. R. China
| | - Hongwen Huang
- School of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Yiqun Zheng
- Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong 273115, P. R. China
| |
Collapse
|
27
|
He S, Liu Y, Li H, Wu Q, Ma D, Gao D, Bi J, Yang Y, Cui C. Highly Dispersed Mo Sites on Pd Nanosheets Enable Selective Ethanol-to-Acetate Conversion. ACS APPLIED MATERIALS & INTERFACES 2021; 13:13311-13318. [PMID: 33689263 DOI: 10.1021/acsami.1c01010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The fermentation of biomass allows for the generation of major renewable ethanol biofuel that has high energy density favorable for direct alcohol fuel cells in alkaline media. However, selective conversion of ethanol to either CO2 or acetate remains a great challenge. Especially, the ethanol-to-acetate route usually demonstrates decentoxidation current density relative to the ethanol-to-CO2 route that contains strongly adsorbed poisons. This makes the total oxidation of ethanol to CO2 unnecessary. Here, we present a highly active ethanol oxidation electrocatalyst that was prepared by in situ decorating highly dispersed Mo sites on Pd nanosheets (MoOx/Pd) via a surfactant-free and facile route. We found that ∼2 atom % of Mo on Pd nanosheets increases the current density to 3.8 A mgPd-1, around 2 times more active relative to the undecorated Pd nanosheets, achieving nearly 100% faradic efficiency for the ethanol-to-acetate conversion in an alkaline electrolyte without the generation of detectable CO2, evidenced by in situ electrochemical infrared spectroscopy, nuclear magnetic resonance, and ion chromatography. The selective and CO2-free conversion offers a promising strategy through alcohol fuel cells for contributing comparable current density to power electrical equipment while for selective oxidation of biofuels to useful acetate intermediate for the chemical industry.
Collapse
Affiliation(s)
- Shenglan He
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Yue Liu
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China
| | - Hongjian Li
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Qianbao Wu
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Dongsheng Ma
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Daojiang Gao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Jian Bi
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Yaoyue Yang
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China
| | - Chunhua Cui
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| |
Collapse
|
28
|
Li T, Harrington DA. An Overview of Glycerol Electrooxidation Mechanisms on Pt, Pd and Au. CHEMSUSCHEM 2021; 14:1472-1495. [PMID: 33427408 DOI: 10.1002/cssc.202002669] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/07/2021] [Indexed: 06/12/2023]
Abstract
In the most recent decade, glycerol electrooxidation (GEOR) has attracted extensive research interest for valorization of glycerol: the conversion of glycerol to value-added products. These reactions at platinum, palladium, and gold electrodes have a lot of uncertainty in their reaction mechanisms, which has generated some controversies. This review gathers many reported experimental results, observations and proposed reaction mechanisms in order to draw a full picture of GEOR. A particular focus is the clarification of two propositions: Pd is inferior to Pt in cleaving the C-C bonds of glycerol during the electrooxidation and the massive production of CO2 at high overpotentials is due to the oxidation of the already-oxidized carboxylate products. It is concluded that the inferior C-C bond cleavability with Pd electrodes, as compared with Pt electrodes, is due to the inefficiency of deprotonation, and the massive generation of CO2 as well as other C1/C2 side products is partially caused by the consumption of OH- at the anodes, as a lower pH reduces the amount of carboxylates and favors the C-C bond scission. A reaction mechanism is proposed in this review, in which the generation of side products are directly from glycerol ("competition" between each side product) rather than from the further oxidation of C2/C3 products. Additionally, GEOR results and associated interpretations for Ni electrodes are presented, as well as a brief review on the performances of multi-metallic electrocatalysts (most of which are nanocatalysts) as an introduction to these future research hotpots.
Collapse
Affiliation(s)
- Tianyu Li
- Department of Chemistry, University of Victoria, Victoria, BC, Canada, V8W 3V6
| | - David A Harrington
- Department of Chemistry, University of Victoria, Victoria, BC, Canada, V8W 3V6
| |
Collapse
|
29
|
Au-catalyzed electrochemical oxidation of alcohols using an electrochemical column flow cell. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2021.106944] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
30
|
El Attar A, Oularbi L, Chemchoub S, El Rhazi M. Effect of electrochemical activation on the performance and stability of hybrid (PPy/Cu2O nanodendrites) for efficient ethanol oxidation in alkaline medium. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115042] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
31
|
Plasmonic Au–Pd Bimetallic Nanocatalysts for Hot-Carrier-Enhanced Photocatalytic and Electrochemical Ethanol Oxidation. CRYSTALS 2021. [DOI: 10.3390/cryst11030226] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Gold–palladium (Au–Pd) bimetallic nanostructures with engineered plasmon-enhanced activity sustainably drive energy-intensive chemical reactions at low temperatures with solar simulated light. A series of alloy and core–shell Au–Pd nanoparticles (NPs) were prepared to synergistically couple plasmonic (Au) and catalytic (Pd) metals to tailor their optical and catalytic properties. Metal-based catalysts supporting a localized surface plasmon resonance (SPR) can enhance energy-intensive chemical reactions via augmented carrier generation/separation and photothermal conversion. Titania-supported Au–Pd bimetallic (i) alloys and (ii) core–shell NPs initiated the ethanol (EtOH) oxidation reaction under solar-simulated irradiation, with emphasis toward driving carbon–carbon (C–C) bond cleavage at low temperatures. Plasmon-assisted complete oxidation of EtOH to CO2, as well as intermediary acetaldehyde, was examined by monitoring the yield of gaseous products from suspended particle photocatalysis. Photocatalytic, electrochemical, and photoelectrochemical (PEC) results are correlated with Au–Pd composition and homogeneity to maintain SPR-induced charge separation and mitigate the carbon monoxide poisoning effects on Pd. Photogenerated holes drive the photo-oxidation of EtOH primarily on the Au-Pd bimetallic nanocatalysts and photothermal effects improve intermediate desorption from the catalyst surface, providing a method to selectively cleave C–C bonds.
Collapse
|
32
|
Kumari P, Bahadur N, Cretin M, Kong L, O'Dell LA, Merenda A, Dumée LF. Electro-catalytic membrane reactors for the degradation of organic pollutants – a review. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00091h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electro-catalytic membrane reactor exhibiting electro-oxidation degradation of organic pollutants on anodic membrane.
Collapse
Affiliation(s)
- Priyanka Kumari
- Institute for Frontier Materials, Deakin University, Geelong, Waurn Ponds, 3216, Victoria, Australia
- TERI-Deakin Nano-Biotechnology Centre (TDNBC), Teri Gram, Gwal pahari, Gurugram 122003, Haryana, India
| | - Nupur Bahadur
- TERI-Deakin Nano-Biotechnology Centre (TDNBC), Teri Gram, Gwal pahari, Gurugram 122003, Haryana, India
- TADOX Technology Centre for Water Reuse, Water Resources Division, The Energy and Resources Institute (TERI), India Habitat Centre, Lodhi Road, New Delhi-110003, India
| | - Marc Cretin
- Institut Européen des Membranes, IEM - UMR 5635, ENSCM, CNRS, Univ Montpellier, Montpellier, France
| | - Lingxue Kong
- Institute for Frontier Materials, Deakin University, Geelong, Waurn Ponds, 3216, Victoria, Australia
| | - Luke A. O'Dell
- Institute for Frontier Materials, Deakin University, Geelong, Waurn Ponds, 3216, Victoria, Australia
| | - Andrea Merenda
- Institute for Frontier Materials, Deakin University, Geelong, Waurn Ponds, 3216, Victoria, Australia
| | - Ludovic F. Dumée
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
- Research and Innovation Center on CO2 and Hydrogen, Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Membrane and Advanced Water Technology, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
33
|
Palma L, Almeida T, de Andrade A. Comparative study of catalyst effect on ethanol electrooxidation in alkaline medium: Pt- and Pd-based catalysts containing Sn and Ru. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Yang X, Liang Z, Chen S, Ma M, Wang Q, Tong X, Zhang Q, Ye J, Gu L, Yang N. A Phosphorus-Doped Ag@Pd Catalyst for Enhanced CC Bond Cleavage during Ethanol Electrooxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004727. [PMID: 33136339 DOI: 10.1002/smll.202004727] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/02/2020] [Indexed: 06/11/2023]
Abstract
Ethanol is preferred to be oxidized into CO2 for the construction of a high-performance direct ethanol fuel cell since this complete ethanol oxidation reaction (EOR) transfers 12 electrons. However, this EOR is sluggish and has the low activity as well as poor selectivity. To promote such a favorable EOR, more exactly the cleavage selectivity of CC bonds in ethanol, phosphorus-doped silver-core-and-Pd-shell catalysts (denoted as Ag@PdP) are designed and synthesized. In the alkaline media, a Ag@Pd2 P0.2 catalyst is superior toward EOR into CO2 . It exhibits seven times higher mass activity and six times higher selectivity than the benchmark Pd/C catalyst. As confirmed by means of density functional theory calculation and in situ Fourier-transform infrared spectroscopy, such high performance stems from an increased adsorption energy of OH radicals on the Pd active sites. Meanwhile, the tensile strain effect of a core-shell structure of this Ag@Pd2 P0.2 catalyst favors the formation of adsorbed CH3 CO intermediate, the key species for the enhanced C-C cleavage into CO2 , instead of acetate. The proposed way to design and synthesize such high-performance EOR catalysts will explore the practical applications of direct alkaline ethanol fuel cells.
Collapse
Affiliation(s)
- Xiaobo Yang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zaipeng Liang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuai Chen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
| | - Minjun Ma
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
| | - Xili Tong
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
| | - Qinghua Zhang
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jinyu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Lin Gu
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Nianjun Yang
- Institute of Materials Engineering, University of Siegen, Siegen, 57076, Germany
| |
Collapse
|
35
|
|
36
|
Toward Overcoming the Challenges in the Comparison of Different Pd Nanocatalysts: Case Study of the Ethanol Oxidation Reaction. INORGANICS 2020. [DOI: 10.3390/inorganics8110059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Precious metal nanoparticles, in particular palladium nanomaterials, show excellent catalytic properties and are key in the development of energy systems. For instance, ethanol fuel cells are promising devices for sustainable energy conversion, where Pd-based catalysts are key catalysts for the related ethanol oxidation reaction (EOR). Pd is a limited resource; thus, a remaining challenge is the development of efficient and stable Pd-based catalysts. This calls for a deeper understanding of the Pd properties at the nanoscale. This knowledge can be gained in comparative studies of different Pd nanomaterials. However, such studies remain challenging to perform and interpret due to the lack of cross-studies using the same Pd nanomaterials as a reference. Here, as-prepared sub 3 nm diameter surfactant-free Pd nanoparticles supported on carbon are obtained by a simple approach. The as-prepared catalysts with Pd loading 10 and 30 wt % show higher activity and stability compared to commercially available counterparts for the EOR. Upon electrochemical testing, a significant size increase and loss of electrochemical active surface are observed for the as-prepared catalysts, whereas the commercial samples show an increase in the electrochemically active surface area and moderate size increase. This study shines light on the challenging comparison of different catalysts across the literature. Further advancement in Pd (electro)catalyst design will gain from including self-prepared catalysts. The simple synthesis detailed easily leads to suitable nanoparticles to be used as a reference for more systematic comparative studies of Pd catalysts across the literature.
Collapse
|
37
|
Haisch T, Kubannek F, Chen D, Tong YJ, Krewer U. Origin of the Drastic Current Decay during Potentiostatic Alkaline Methanol Oxidation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:43535-43542. [PMID: 32885943 DOI: 10.1021/acsami.0c06547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The current production from the alkaline methanol electro-oxidation reaction does not reach a steady state on a smooth platinum catalyst under potentiostatic conditions. We investigated two possible explanations for this phenomenon: changes on the catalyst surface and changes in the solution near the electrode. In situ Fourier transform infrared spectroscopy experiments were conducted to evaluate the adsorbed species on the catalyst surface and a simulation model was set up to describe the changes of concentrations inside the solution. Linear- and bridge-bonded carbon monoxide are the only organic compounds which can be detected by in situ spectroscopy at fixed potentials, but their amount does not increase over time. The simulation shows that the consumption of hydroxide ions and production of carbonaceous species during alkaline oxidation causes a local pH shift near the catalyst surface. Assuming a one-electron transfer as the limiting step, this pH shift was found to contribute to the observed current loss at a potential of 0.77 V.
Collapse
Affiliation(s)
- Theresa Haisch
- DECHEMA Research Institute, 60486 Frankfurt am Main, Germany
- Institute of Energy and Process Systems Engineering, TU Braunschweig, 38106 Braunschweig, Germany
| | - Fabian Kubannek
- Institute of Energy and Process Systems Engineering, TU Braunschweig, 38106 Braunschweig, Germany
| | - Dejun Chen
- Department of Chemistry, Georgetown University, Washington, District of Columbia 20007, United States
| | - YuYe J Tong
- Department of Chemistry, Georgetown University, Washington, District of Columbia 20007, United States
| | - Ulrike Krewer
- Institute of Energy and Process Systems Engineering, TU Braunschweig, 38106 Braunschweig, Germany
- Institute for Applied Materials, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| |
Collapse
|
38
|
|
39
|
Zhang J, Tao HB, Kuang M, Yang HB, Cai W, Yan Q, Mao Q, Liu B. Advances in Thermodynamic-Kinetic Model for Analyzing the Oxygen Evolution Reaction. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01906] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Junming Zhang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
- Nanyang Environmental & Water Research Institute (Newri), Interdisciplinary Graduate Program, Graduate School, Nanyang Technological University, Singapore 637141, Singapore
| | - Hua Bing Tao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Min Kuang
- School of Material Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Hong Bin Yang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Weizheng Cai
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Qingyu Yan
- School of Material Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Qing Mao
- School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, PR China
| | - Bin Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
- Nanyang Environmental & Water Research Institute (Newri), Interdisciplinary Graduate Program, Graduate School, Nanyang Technological University, Singapore 637141, Singapore
| |
Collapse
|
40
|
Jilani SZ, Cohen CP, Iyanobor EE, Zager D, Zheng R, Frankenfield KM, Tong YJ. Surfactant-Free One-Pot Synthesis of Homogeneous Trimetallic PtNiCu Nanoparticles with Size Control by Using Glycine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5902-5907. [PMID: 32378413 DOI: 10.1021/acs.langmuir.0c00665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Homogeneous platinum alloy nanoparticles (NPs) are of great interest to the electrocatalytic community for potential use in various fuel cell electrodes. Increasing the surface area available per unit mass by decreasing the size of NPs while maintaining or improving activity is one of the key tasks of fuel cell catalysis. Achieving both in a synthesis of multielement NPs is still a challenging workup. In this investigation, we report the use of glycine as a size control agent to make ultrasmall homogeneous trimetallic PtNiCu NPs within 2-5 nm range. The mechanistic roles of dimethyl formamide (DMF), formaldehyde, water, and glycine are explored to understand the formation of these small NPs. Interestingly, it was observed that these PtNiCu NPs exhibited substantially enhanced mass activities toward the electro-oxidation of ethanol in comparison to commercial Pt black.
Collapse
Affiliation(s)
- Safia Z Jilani
- Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, District of Columbia 20057, United States
| | - Carter P Cohen
- Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, District of Columbia 20057, United States
| | - Esther E Iyanobor
- Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, District of Columbia 20057, United States
| | - Daniel Zager
- Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, District of Columbia 20057, United States
| | - Rongfeng Zheng
- Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, District of Columbia 20057, United States
| | - Kaitlyn M Frankenfield
- Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, District of Columbia 20057, United States
| | - YuYe J Tong
- Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, District of Columbia 20057, United States
| |
Collapse
|
41
|
Garlyyev B, Xue S, Fichtner J, Bandarenka AS, Andronescu C. Prospects of Value-Added Chemicals and Hydrogen via Electrolysis. CHEMSUSCHEM 2020; 13:2513-2521. [PMID: 32059064 PMCID: PMC7318696 DOI: 10.1002/cssc.202000339] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Indexed: 06/10/2023]
Abstract
Cost is a major drawback that limits the industrial-scale hydrogen production through water electrolysis. The overall cost of this technology can be decreased by coupling the electrosynthesis of value-added chemicals at the anode side with electrolytic hydrogen generation at the cathode. This Minireview provides a directory of anodic oxidation reactions that can be combined with cathodic hydrogen generation. The important parameters for selecting the anodic reactions, such as choice of catalyst material and its selectivity towards specific products are elaborated in detail. Furthermore, various novel electrolysis cell architectures for effortless separation of value-added products from hydrogen gas are described.
Collapse
Affiliation(s)
- Batyr Garlyyev
- Physics of Energy Conversion and StorageDepartment of PhysicsTechnische Universität MünchenJames-Franck-Str. 185748GarchingGermany
| | - Song Xue
- Physics of Energy Conversion and StorageDepartment of PhysicsTechnische Universität MünchenJames-Franck-Str. 185748GarchingGermany
| | - Johannes Fichtner
- Physics of Energy Conversion and StorageDepartment of PhysicsTechnische Universität MünchenJames-Franck-Str. 185748GarchingGermany
| | - Aliaksandr S. Bandarenka
- Physics of Energy Conversion and StorageDepartment of PhysicsTechnische Universität MünchenJames-Franck-Str. 185748GarchingGermany
| | - Corina Andronescu
- Technical Chemistry IIIFaculty of Chemistry and CENIDEUniversity Duisburg-EssenCarl-Benz-Straße 19947057DuisburgGermany
| |
Collapse
|
42
|
Sun Q, Xu H, Du Y. Recent Achievements in Noble Metal Catalysts with Unique Nanostructures for Liquid Fuel Cells. CHEMSUSCHEM 2020; 13:2540-2551. [PMID: 32096317 DOI: 10.1002/cssc.201903381] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/29/2020] [Indexed: 06/10/2023]
Abstract
In recent years, research efforts have been focused on the design and fabrication of highly efficient catalysts for liquid fuel cells, because the use of these cells is an important approach for alleviating environmental pollution and energy crises. However, the limitations of the catalytic performance of industrial Pt/C have strongly hindered the development of these fuel cells. The catalyst morphology has a strong impact on its performance; nanostructured catalysts are preferred as they offer large specific surface area and more exposed active centers. In view of this, many catalysts with unique structures have been synthesized in recent years, all of which show excellent catalytic performance characteristics. Despite these achievements, few efforts have been made to survey this field comprehensively. Herein, the recent advances in catalysts for liquid fuel cells are summarized, with a focus on noble metal catalysts with unique morphologies such as nanowires, nanosheets, and assembly structures. Their formation mechanisms are discussed critically. The relationship between the unique morphologies and excellent performance of these catalysts is also explored. This work may provide guidelines for the further development of liquid fuel cells.
Collapse
Affiliation(s)
- Qiwen Sun
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Hui Xu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
43
|
Affiliation(s)
- Yoshiharu MUKOUYAMA
- Division of Science, College of Science and Engineering, Tokyo Denki University
| | - Keisuke IIDA
- Division of Science, College of Science and Engineering, Tokyo Denki University
| | - Terumasa KUGE
- Division of Science, College of Science and Engineering, Tokyo Denki University
| |
Collapse
|
44
|
Holade Y, Tuleushova N, Tingry S, Servat K, Napporn TW, Guesmi H, Cornu D, Kokoh KB. Recent advances in the electrooxidation of biomass-based organic molecules for energy, chemicals and hydrogen production. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02446h] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The recent developments in biomass-derivative fuelled electrochemical converters for electricity or hydrogen production together with chemical electrosynthesis have been reviewed.
Collapse
Affiliation(s)
- Yaovi Holade
- Institut Européen des Membranes
- IEM – UMR 5635
- Univ. Montpellier
- ENSCM
- CNRS
| | - Nazym Tuleushova
- Institut Européen des Membranes
- IEM – UMR 5635
- Univ. Montpellier
- ENSCM
- CNRS
| | - Sophie Tingry
- Institut Européen des Membranes
- IEM – UMR 5635
- Univ. Montpellier
- ENSCM
- CNRS
| | - Karine Servat
- Université de Poitiers
- IC2MP UMR-CNRS 7285
- 86073 Poitiers Cedex 9
- France
| | - Teko W. Napporn
- Université de Poitiers
- IC2MP UMR-CNRS 7285
- 86073 Poitiers Cedex 9
- France
| | - Hazar Guesmi
- Institut Charles Gerhardt Montpellier
- ICGM – UMR 5253
- Univ. Montpellier
- ENSCM
- CNRS
| | - David Cornu
- Institut Européen des Membranes
- IEM – UMR 5635
- Univ. Montpellier
- ENSCM
- CNRS
| | - K. Boniface Kokoh
- Université de Poitiers
- IC2MP UMR-CNRS 7285
- 86073 Poitiers Cedex 9
- France
| |
Collapse
|
45
|
Effect of temperature on the ethanol electrooxidation at PtNirich@PtrichNi/C catalyst in acidic and alkaline media. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2019.113754] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Barbosa AFB, Del Colle V, Gómez-Marín AM, Angelucci CA, Tremiliosi-Filho G. Effect of the Random Defects Generated on the Surface of Pt(111) on the Electro-oxidation of Ethanol: An Electrochemical Study. Chemphyschem 2019; 20:3045-3055. [PMID: 31342615 DOI: 10.1002/cphc.201900544] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/23/2019] [Indexed: 11/06/2022]
Abstract
In the present work, the Pt(111) surface was disordered by controlling the density of {110}- and {100}-type defects. The cyclic voltammogram (CV) of a disordered surface in acid media consists of three contributions within the hydrogen adsorption/desorption region: one from the well-ordered Pt(111) symmetry and the other two transformed from the {111}-symmetry with contributions of {110}- and {100}-type surface defects. The ethanol oxidation reaction (EOR) was studied on these disordered surfaces. Electrochemical studies were performed in 0.1 M HClO4 +0.1 M ethanol using cyclic voltammetry and chronoamperometry. Changes in current densities associated to the specific potentials at which each oxidation peak appears suggest that different surface domains of disordered platinum oxidize ethanol independently. Additionally, as the surface-defect density increases, the EOR is catalysed better. This tendency is directly observed from the CV parameters because the onset and peak potentials are shifted to less positive values and accompanied by increases in the oxidation-peak current on disordered surfaces. Similarly, the CO oxidation striping confirmed this same tendency. Chronoamperometric experiments showed two opposite behaviors at short oxidation times (0.1 s). The EOR was quickly catalyzed on the most disordered surface, Pt(111)-16, and was then rapidly deactivated. These results provide fundamental information on the EOR, which contributes to the atomic-level understanding of real catalysts.
Collapse
Affiliation(s)
- Amaury F B Barbosa
- Institute of Chemistry of São Carlos, University of São Paulo, Av. Trabalhador São Carlense, 400, 13566-590 -, São Carlos, São Paulo, Brazil.,Federal Institute of Alagoas-Campus Penedo, Rod. Engenheiro Joaquim Gonçalves, s/n, 57200-000 -, Penedo, Alagoas, Brazil
| | - Vinicius Del Colle
- Institute of Chemistry of São Carlos, University of São Paulo, Av. Trabalhador São Carlense, 400, 13566-590 -, São Carlos, São Paulo, Brazil.,Department of Chemistry, Federal University of Alagoas-Campus Arapiraca, Av. Manoel Severino Barbosa s/n, 57309-005 -, Arapiraca, Alagoas, Brazil
| | - Ana M Gómez-Marín
- Department of Chemistry, Division of Fundamental Sciences, Technological Institute of Aeronautics, 12228-900 -, São José dos Campos, São Paulo, Brazil
| | - Camilo A Angelucci
- Federal University of ABC, Center for Natural and Human Sciences, Av. Dos Estados, 5001, 09210-580 -, Santo André, São Paulo, Brazil
| | - Germano Tremiliosi-Filho
- Institute of Chemistry of São Carlos, University of São Paulo, Av. Trabalhador São Carlense, 400, 13566-590 -, São Carlos, São Paulo, Brazil
| |
Collapse
|
47
|
Torrero J, Peña MA, Retuerto M, Pascual L, Rojas S. Infrared study of the electrooxidation of ethanol in alkaline electrolyte with Pt/C, PtRu/C and Pt3Sn. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.06.151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
48
|
Bai J, Liu D, Yang J, Chen Y. Nanocatalysts for Electrocatalytic Oxidation of Ethanol. CHEMSUSCHEM 2019; 12:2117-2132. [PMID: 30834720 DOI: 10.1002/cssc.201803063] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/01/2019] [Indexed: 06/09/2023]
Abstract
The use of ethanol as a fuel in direct alcohol fuel cells depends not only on its ease of production from renewable sources, but also on overcoming the challenges of storage and transportation. In an ethanol-based fuel cell, highly active electrocatalysts are required to break the C-C bond in ethanol for its complete oxidation at lower overpotentials, with the aim of increasing the cell performance, ethanol conversion rates, and fuel efficiency. In recent decades, the development of wet-chemistry methods has stimulated research into catalyst design, reactivity tailoring, and mechanistic investigations, and thus, created great opportunities to achieve efficient oxidation of ethanol. In this Minireview, the nanomaterials tested as electrocatalysts for the ethanol oxidation reaction in acid or alkaline environments are summarized. The focus is mainly on nanomaterials synthesized by using wet-chemistry methods, with particular attention on the relationship between the chemical and physical characteristics of the catalysts, for example, catalyst composition, morphology, structure, degree of alloying, presence of oxides or supports, and their activity for ethanol electro-oxidation. As potential alternatives to noble metals, non-noble-metal catalysts for ethanol oxidation are also briefly reviewed. Insights into further enhancing the catalytic performance through the design of efficient electrocatalysts are also provided.
Collapse
Affiliation(s)
- Juan Bai
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of, Education), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, PR China
| | - Danye Liu
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering Address, Chinese Academy of Sciences, Beijing, 100190, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jun Yang
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering Address, Chinese Academy of Sciences, Beijing, 100190, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yu Chen
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of, Education), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, PR China
| |
Collapse
|
49
|
Wang C, Zhang K, Xu H, Du Y, Goh MC. Anchoring gold nanoparticles on poly(3,4-ethylenedioxythiophene) (PEDOT) nanonet as three-dimensional electrocatalysts toward ethanol and 2-propanol oxidation. J Colloid Interface Sci 2019; 541:258-268. [DOI: 10.1016/j.jcis.2019.01.055] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/01/2019] [Accepted: 01/14/2019] [Indexed: 11/16/2022]
|
50
|
Zhu C, Lan B, Wei RL, Wang CN, Yang YY. Potential-Dependent Selectivity of Ethanol Complete Oxidation on Rh Electrode in Alkaline Media: A Synergistic Study of Electrochemical ATR-SEIRAS and IRAS. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00138] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chan Zhu
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, Chengdu, 610041 Sichuan Province, China
| | - Bin Lan
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, Chengdu, 610041 Sichuan Province, China
| | - Rui-Lin Wei
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, Chengdu, 610041 Sichuan Province, China
| | - Chao-Nan Wang
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, Chengdu, 610041 Sichuan Province, China
| | - Yao-Yue Yang
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, Chengdu, 610041 Sichuan Province, China
| |
Collapse
|