• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4615256)   Today's Articles (651)   Subscriber (49393)
For: Thybaut JW, Sun J, Olivier L, Van Veen AC, Mirodatos C, Marin GB. Catalyst design based on microkinetic models: Oxidative coupling of methane. Catal Today 2011;159:29-36. [DOI: 10.1016/j.cattod.2010.09.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Number Cited by Other Article(s)
1
Yu Y, Lundin STB, Obata K, Sarathy SM, Takanabe K. Improved Homogeneous–Heterogeneous Kinetic Mechanism Using a Langmuir–Hinshelwood-Based Microkinetic Model for High-Pressure Oxidative Coupling of Methane. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
2
ÖZDEMİR H, ÇİFTÇİOĞLU E, Faruk ÖKSÜZÖMER M. Lanthanum Based Catalysts for Oxidative Coupling of Methane: Effect of Morphology and Structure. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
3
Cruchade H, Medeiros-Costa IC, Nesterenko N, Gilson JP, Pinard L, Beuque A, Mintova S. Catalytic Routes for Direct Methane Conversion to Hydrocarbons and Hydrogen: Current State and Opportunities. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
4
Barteau MA. Is it time to stop searching for better catalysts for Oxidative Coupling of Methane? J Catal 2022. [DOI: 10.1016/j.jcat.2022.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
5
Oxidative Coupling of Methane over Pt/Al2O3 at High Temperature: Multiscale Modeling of the Catalytic Monolith. Catalysts 2022. [DOI: 10.3390/catal12020189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]  Open
6
Rosseau LRS, Medrano JA, Bhardwaj R, Goetheer ELV, Filot IAW, Gallucci F, van Sint Annaland M. On the Potential of Gallium- and Indium-Based Liquid Metal Membranes for Hydrogen Separation. MEMBRANES 2022;12:membranes12010075. [PMID: 35054601 PMCID: PMC8780804 DOI: 10.3390/membranes12010075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/28/2021] [Accepted: 01/02/2022] [Indexed: 11/17/2022]
7
Nishimura S, Le SD, Miyazato I, Fujima J, Taniike T, Ohyama J, Takahashi K. High-Throughput Screening and Literature Data Driven Machine Learning Assisting Investigation of Multi-component La2O3-based Catalysts for Oxidative Coupling of Methane. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02206g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
8
Li Z. First-principles-based microkinetic rate equation theory for oxygen carrier reduction in chemical looping. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117042] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
9
Wang H, Shao C, Gascon J, Takanabe K, Sarathy SM. Noncatalytic Oxidative Coupling of Methane (OCM): Gas-Phase Reactions in a Jet Stirred Reactor (JSR). ACS OMEGA 2021;6:33757-33768. [PMID: 34926924 PMCID: PMC8674986 DOI: 10.1021/acsomega.1c05020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
10
Özdemir H. Detailed Investigation of Sm 2 O 3 Catalysts with Different Morphologies for Oxidative Coupling of Methane. ChemistrySelect 2021. [DOI: 10.1002/slct.202101727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
11
Fonseca AA, Heyn RH, Frøseth M, Thybaut JW, Poissonnier J, Meiswinkel A, Zander HJ, Canivet J. A Disruptive Innovation for Upgrading Methane to C3 Commodity Chemicals : Technical challenges faced by the C123 European consortium. JOHNSON MATTHEY TECHNOLOGY REVIEW 2021. [DOI: 10.1595/205651321x16051060155762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
12
Vernuccio S, Bickel EE, Gounder R, Broadbelt LJ. Propene oligomerization on Beta zeolites: Development of a microkinetic model and experimental validation. J Catal 2021. [DOI: 10.1016/j.jcat.2021.01.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
13
Ishikawa A, Tateyama Y. A First-Principles Microkinetics for Homogeneous–Heterogeneous Reactions: Application to Oxidative Coupling of Methane Catalyzed by Magnesium Oxide. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04104] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
14
Motagamwala AH, Dumesic JA. Microkinetic Modeling: A Tool for Rational Catalyst Design. Chem Rev 2021;121:1049-1076. [PMID: 33205961 DOI: 10.1021/acs.chemrev.0c00394] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
15
Nguyen TN, Nakanowatari S, Nhat Tran TP, Thakur A, Takahashi L, Takahashi K, Taniike T. Learning Catalyst Design Based on Bias-Free Data Set for Oxidative Coupling of Methane. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04629] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
16
Vandewalle LA, Van Geem KM, Marin GB, Bos R. A Boudart Number for the Assessment of Irreducible Pellet-Scale Mass Transfer Limitations: Application to Oxidative Coupling of Methane. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
17
Computational design of heterogeneous catalysts and gas separation materials for advanced chemical processing. Front Chem Sci Eng 2020. [DOI: 10.1007/s11705-020-1959-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
18
Nishimura S, Ohyama J, Kinoshita T, Dinh Le S, Takahashi K. Revisiting Machine Learning Predictions for Oxidative Coupling of Methane (OCM) based on Literature Data. ChemCatChem 2020. [DOI: 10.1002/cctc.202001032] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
19
Sollier BM, Bonne M, Khenoussi N, Michelin L, Miró EE, Gómez LE, Boix AV, Lebeau B. Synthesis and Characterization of Electrospun Nanofibers of Sr-La-Ce Oxides as Catalysts for the Oxidative Coupling of Methane. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01154] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
20
Lucas RC, Morgan D, Kuech TF. Density Functional Theory Study of the Gas Phase and Surface Reaction Kinetics for the MOVPE Growth of GaAs1–yBiy. J Phys Chem A 2020;124:1682-1697. [DOI: 10.1021/acs.jpca.9b10399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
21
Pirro L, Mendes PSF, Vandegehuchte BD, Marin GB, Thybaut JW. Catalyst screening for the oxidative coupling of methane: from isothermal to adiabatic operation via microkinetic simulations. REACT CHEM ENG 2020. [DOI: 10.1039/c9re00478e] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
22
Kiani D, Sourav S, Baltrusaitis J, Wachs IE. Oxidative Coupling of Methane (OCM) by SiO2-Supported Tungsten Oxide Catalysts Promoted with Mn and Na. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01585] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
23
The role of mass and heat transfer in the design of novel reactors for oxidative coupling of methane. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2018.09.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
24
Pirro L, Mendes PSF, Paret S, Vandegehuchte BD, Marin GB, Thybaut JW. Descriptor–property relationships in heterogeneous catalysis: exploiting synergies between statistics and fundamental kinetic modelling. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00719a] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
25
Karakaya C, Zhu H, Loebick C, Weissman JG, Kee RJ. A detailed reaction mechanism for oxidative coupling of methane over Mn/Na2WO4/SiO2 catalyst for non-isothermal conditions. Catal Today 2018. [DOI: 10.1016/j.cattod.2018.02.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
26
Motagamwala AH, Ball MR, Dumesic JA. Microkinetic Analysis and Scaling Relations for Catalyst Design. Annu Rev Chem Biomol Eng 2018;9:413-450. [DOI: 10.1146/annurev-chembioeng-060817-084103] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
27
Hognon C, Simon Y, Marquaire PM, Courson C, Kiennemann A. Hydrogen production by catalytic partial oxidation of propane over CeO2. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.01.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
28
Parishan S, Nowicka E, Fleischer V, Schulz C, Colmenares MG, Rosowski F, Schomäcker R. Investigation into Consecutive Reactions of Ethane and Ethene Under the OCM Reaction Conditions over MnxOy–Na2WO4/SiO2 Catalyst. Catal Letters 2018. [DOI: 10.1007/s10562-018-2384-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
29
Alexiadis VI, Serres T, Marin GB, Mirodatos C, Thybaut JW, Schuurman Y. Analysis of volume‐to‐surface ratio effects on methane oxidative coupling using microkinetic modeling. AIChE J 2018. [DOI: 10.1002/aic.16152] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
30
Gambo Y, Jalil A, Triwahyono S, Abdulrasheed A. Recent advances and future prospect in catalysts for oxidative coupling of methane to ethylene: A review. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2017.10.027] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
31
Karakaya C, Zhu H, Zohour B, Senkan S, Kee RJ. Detailed Reaction Mechanisms for the Oxidative Coupling of Methane over La 2 O 3 /CeO 2 Nanofiber Fabric Catalysts. ChemCatChem 2017. [DOI: 10.1002/cctc.201701172] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
32
Hayek NS, Lucas NS, Warwar Damouny C, Gazit OM. Critical Surface Parameters for the Oxidative Coupling of Methane over the Mn-Na-W/SiO2 Catalyst. ACS APPLIED MATERIALS & INTERFACES 2017;9:40404-40411. [PMID: 29067811 DOI: 10.1021/acsami.7b14941] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
33
Grant JT, Venegas JM, McDermott WP, Hermans I. Aerobic Oxidations of Light Alkanes over Solid Metal Oxide Catalysts. Chem Rev 2017;118:2769-2815. [DOI: 10.1021/acs.chemrev.7b00236] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
34
Olivier-Bourbigou H, Chizallet C, Dumeignil F, Fongarland P, Geantet C, Granger P, Launay F, Löfberg A, Massiani P, Maugé F, Ouali A, Roger AC, Schuurman Y, Tanchoux N, Uzio D, Jérôme F, Duprez D, Pinel C. The Pivotal Role of Catalysis in France: Selected Examples of Recent Advances and Future Prospects. ChemCatChem 2017. [DOI: 10.1002/cctc.201700426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
35
Noon D, Zohour B, Bae A, Seubsai A, Senkan S. Effects of Ir-doping on the transition from oxidative coupling to partial oxidation of methane in La2O3–CeO2 nanofiber catalysts: spatial concentration and temperature profiles. RSC Adv 2017. [DOI: 10.1039/c7ra02616a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]  Open
36
Kondratenko EV, Peppel T, Seeburg D, Kondratenko VA, Kalevaru N, Martin A, Wohlrab S. Methane conversion into different hydrocarbons or oxygenates: current status and future perspectives in catalyst development and reactor operation. Catal Sci Technol 2017. [DOI: 10.1039/c6cy01879c] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
37
Obradović A, Thybaut JW, Marin GB. Oxidative Coupling of Methane: Opportunities for Microkinetic Model-Assisted Process Implementations. Chem Eng Technol 2016. [DOI: 10.1002/ceat.201600216] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
38
Lomonosov VI, Sinev MY. Oxidative coupling of methane: Mechanism and kinetics. KINETICS AND CATALYSIS 2016. [DOI: 10.1134/s0023158416050128] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
39
Collett CH, McGregor J. Things go better with coke: the beneficial role of carbonaceous deposits in heterogeneous catalysis. Catal Sci Technol 2016. [DOI: 10.1039/c5cy01236h] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
40
Schwach P, Frandsen W, Willinger MG, Schlögl R, Trunschke A. Structure sensitivity of the oxidative activation of methane over MgO model catalysts: I. Kinetic study. J Catal 2015. [DOI: 10.1016/j.jcat.2015.05.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
41
Kondratenko EV, Schlüter M, Baerns M, Linke D, Holena M. Developing catalytic materials for the oxidative coupling of methane through statistical analysis of literature data. Catal Sci Technol 2015. [DOI: 10.1039/c4cy01443j] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
42
Godini H, Fleischer V, Görke O, Jaso S, Schomäcker R, Wozny G. Thermal Reaction Analysis of Oxidative Coupling of Methane. CHEM-ING-TECH 2014. [DOI: 10.1002/cite.201400080] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
43
Thybaut J, Marin G, Mirodatos C, Schuurman Y, van Veen A, Sadykov V, Pennemann H, Bellinghausen R, Mleczko L. A Novel Technology for Natural Gas Conversion by Means of Integrated Oxidative Coupling and Dry Reforming of Methane. CHEM-ING-TECH 2014. [DOI: 10.1002/cite.201400068] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
44
Zohour B, Noon D, Senkan S. Spatial Concentration and Temperature Profiles in Dual-Packed-Bed Catalytic Reactors: Oxidative Coupling of Methane. ChemCatChem 2014. [DOI: 10.1002/cctc.201402404] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
45
Lin X, Xi Y, Zhang G, Phillips DL, Guo W. A Reaction Mechanism of Methane Coupling on a Silica-Supported Single-Site Tantalum Catalyst. Organometallics 2014. [DOI: 10.1021/om400996f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
46
Grande CA, Lind A, Vistad Ø, Akporiaye D. Olefin–Paraffin Separation Using Calcium-ETS-4. Ind Eng Chem Res 2014. [DOI: 10.1021/ie5004703] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
47
Rubert-Nason P, Mavrikakis M, Maravelias CT, Grabow LC, Biegler LT. Advanced solution methods for microkinetic models of catalytic reactions: A methanol synthesis case study. AIChE J 2013. [DOI: 10.1002/aic.14322] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
48
Kechagiopoulos PN, Thybaut JW, Marin GB. Oxidative Coupling of Methane: A Microkinetic Model Accounting for Intraparticle Surface-Intermediates Concentration Profiles. Ind Eng Chem Res 2013. [DOI: 10.1021/ie403160s] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
49
Kumar P, Thybaut J, Teketel S, Svelle S, Beato P, Olsbye U, Marin G. Single-Event MicroKinetics (SEMK) for Methanol to Hydrocarbons (MTH) on H-ZSM-23. Catal Today 2013. [DOI: 10.1016/j.cattod.2013.02.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
50
Zohour B, Noon D, Senkan S. New Insights into the Oxidative Coupling of Methane from Spatially Resolved Concentration and Temperature Profiles. ChemCatChem 2013. [DOI: 10.1002/cctc.201300401] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
PrevPage 1 of 2 12Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA