1
|
Mureseanu M, Filip M, Bleotu I, Spinu CI, Marin AH, Matei I, Parvulescu V. Cu(II) and Mn(II) Anchored on Functionalized Mesoporous Silica with Schiff Bases: Effects of Supports and Metal-Ligand Interactions on Catalytic Activity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1884. [PMID: 37368314 DOI: 10.3390/nano13121884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023]
Abstract
New series of Cu(II) and Mn(II) complexes with Schiff base ligands derived from 2-furylmethylketone (Met), 2-furaldehyde (Fur), and 2-hydroxyacetopheneone (Hyd) have been synthesized in situ on SBA-15-NH2, MCM-48-NH2, and MCM-41-NH2 functionalized supports. The hybrid materials were characterized by X-ray diffraction, nitrogen adsorption-desorption, SEM and TEM microscopy, TG analysis, and AAS, FTIR, EPR, and XPS spectroscopies. Catalytic performances were tested in oxidation with the hydrogen peroxide of cyclohexene and of different aromatic and aliphatic alcohols (benzyl alcohol, 2-methylpropan-1-ol, and 1-buten-3-ol). The catalytic activity was correlated with the type of mesoporous silica support, ligand, and metal-ligand interactions. The best catalytic activity of all tested hybrid materials was obtained in the oxidation of cyclohexene on SBA-15-NH2-MetMn as a heterogeneous catalyst. No leaching was evidenced for Cu and Mn complexes, and the Cu catalysts were more stable due to a more covalent interaction of the metallic ions with the immobilized ligands.
Collapse
Affiliation(s)
- Mihaela Mureseanu
- Department of Chemistry, Faculty of Sciences, University of Craiova, Calea Bucuresti, 107I, 200478 Craiova, Romania
| | - Mihaela Filip
- "IlieMurgulescu" Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest, Romania
| | - Irina Bleotu
- Department of Chemistry, Faculty of Sciences, University of Craiova, Calea Bucuresti, 107I, 200478 Craiova, Romania
| | - Cezar Ionut Spinu
- Department of Chemistry, Faculty of Sciences, University of Craiova, Calea Bucuresti, 107I, 200478 Craiova, Romania
| | - Alexandru Horia Marin
- Ken and Mary Alice Lindquist Department of Nuclear Engineering, Penn State University, University Park, State College, PA 16802, USA
- Surface Analysis Laboratory, Institute for Nuclear Research Pitesti, 115400 Mioveni, Romania
| | - Iulia Matei
- "IlieMurgulescu" Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest, Romania
| | - Viorica Parvulescu
- "IlieMurgulescu" Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest, Romania
| |
Collapse
|
2
|
Yang S, Li G, Yang Y, Zhu M, Fu Y, Xing N, Shi L. Styrene selective oxidation to benzaldehyde catalyzed by acylhydrazone Mo complexes: Reaction parameter effects and kinetics. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
3
|
Yunphuttha C, Porntheeraphat S, Wongchaisuwat A, Tangbunsuk S, Marr DWM, Viravathana P. Characterization of La1-xSrxMnO3 perovskite catalysts for hydrogen peroxide reduction. Phys Chem Chem Phys 2016; 18:16786-93. [PMID: 27271119 DOI: 10.1039/c6cp02338j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We investigated the crystalline phase and electronic structure of perovskite-type La1-xSrxMnO3 (0.0 ≤ x ≤ 1.0) (LSMx) catalysts synthesized via the citric sol-gel route, for H2O2 reduction. The resulting materials were characterized by XRD, XANES, TR-XANES, and TPO and, after calcination, consisted of cubic perovskite for 0.0 ≤ x ≤ 0.8 and hexagonal perovskite for x = 1.0. Mn species in the precalcined catalysts were oxidized to Mn(3+) for x = 0.0 to 0.6 and to Mn(2+) for x = 0.8 and 1.0. After calcination, Mn species were present in a mixed oxidation state of Mn(3+)/Mn(4+), while Sr(2+) and La(3+) were not altered. TR-XANES and TPO showed that Mn species were oxidized at 210-220 °C and formed active perovskites LSM0.4 and LSM0.0 at 580 °C and 640 °C. This shows that Sr doping can reduce the oxidation temperature of LSMx with 0.2 ≤ x ≤ 0.4. However, the concentration of Mn(4+) in LSMx is increased which is useful for enhancing their catalytic activity and stability. When tested in an alkaline electrolyte, LSM0.6 containing the optimum Mn(4+)/Mn(3+) ratio promoted the formation of hydroxyl via the oxygen intercalation reaction and exhibited low polarization resistance and the highest catalytic activity for H2O2 reduction.
Collapse
Affiliation(s)
- C Yunphuttha
- Department of Materials Science, Kasetsart University, Bangkok, 10900 Thailand
| | - S Porntheeraphat
- Photonics Technology Laboratory, National Electronics and Computer Technology Center, Patumthani, 12120 Thailand
| | - A Wongchaisuwat
- Department of Chemistry, Kasetsart University, Bangkok, 10900 Thailand
| | - S Tangbunsuk
- Department of Chemistry, Kasetsart University, Bangkok, 10900 Thailand
| | - D W M Marr
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, Colorado 80401, USA
| | - P Viravathana
- Department of Chemistry, Kasetsart University, Bangkok, 10900 Thailand and Center of Advanced Studies in Tropical Natural Resources, National Research University, Kasetsart University, Bangkok, 10900 Thailand.
| |
Collapse
|
4
|
Varga G, Timár Z, Csendes Z, Bajnóczi É, Carlson S, Canton S, Bagi L, Sipos P, Pálinkó I. Building, characterising and catalytic activity testing of Co–C-protected amino acid complexes covalently grafted onto chloropropylated silica gel. J Mol Struct 2015. [DOI: 10.1016/j.molstruc.2014.11.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|