1
|
Lahdenperä ASK, Dhankhar J, Davies DJ, Lam NYS, Bacoş PD, de la Vega-Hernández K, Phipps RJ. A chiral hydrogen atom abstraction catalyst for the enantioselective epimerization of meso-diols. Science 2024; 386:42-49. [PMID: 39361751 DOI: 10.1126/science.adq8029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/29/2024] [Indexed: 10/05/2024]
Abstract
Hydrogen atom abstraction is an important elementary chemical process but is very difficult to carry out enantioselectively. We have developed catalysts, readily derived from the Cinchona alkaloid family of natural products, which can achieve this by virtue of their chiral amine structure. The catalyst, following single-electron oxidation, desymmetrizes meso-diols by selectively abstracting a hydrogen atom from one carbon center, which then regains a hydrogen atom by abstraction from a thiol. This results in an enantioselective epimerization process, forming the chiral diastereomer with high enantiomeric excess. Cyclic and acyclic 1,2-diols are compatible, as are acyclic 1,3-diols. Additionally, we demonstrate the viability of combining our approach with carbon-carbon bond formation in Giese addition. Given the increasing number of synthetic methods involving hydrogen atom transfer steps, we anticipate that this work will have a broad impact in the field of enantioselective radical chemistry.
Collapse
Affiliation(s)
- Antti S K Lahdenperä
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Jyoti Dhankhar
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Daniel J Davies
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Nelson Y S Lam
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - P David Bacoş
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | | | - Robert J Phipps
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| |
Collapse
|
2
|
Kitanosono T, Lu F, Masuda K, Yamashita Y, Kobayashi S. Efficient Recycling of Catalyst‐Solvent Couples from Lewis Acid‐Catalyzed Asymmetric Reactions in Water. Angew Chem Int Ed Engl 2022; 61:e202202335. [DOI: 10.1002/anie.202202335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Taku Kitanosono
- Department of Chemistry School of Scienc The University of Tokyo Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Fangqiu Lu
- Department of Chemistry School of Scienc The University of Tokyo Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Koichiro Masuda
- Department of Chemistry School of Scienc The University of Tokyo Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Yasuhiro Yamashita
- Department of Chemistry School of Scienc The University of Tokyo Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Shu Kobayashi
- Department of Chemistry School of Scienc The University of Tokyo Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
3
|
Kitanosono T, Lu F, Masuda K, Yamashita Y, Kobayashi S. Efficient Recycling of Catalyst–Solvent Couples from Lewis Acid‐Catalyzed Asymmetric Reactions in Water. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Taku Kitanosono
- The University of Tokyo: Tokyo Daigaku Department of Chemistry JAPAN
| | - Fangqiu Lu
- The University of Tokyo: Tokyo Daigaku Department of Chemistry JAPAN
| | - Koichiro Masuda
- The University of Tokyo: Tokyo Daigaku Department of Chemistry JAPAN
| | | | - Shu Kobayashi
- The University of Tokyo Department of Chemistry, School of Science 7-3-1 Hongo, Bunkyo-ku 113-0033 Tokyo JAPAN
| |
Collapse
|
4
|
Valapil DG, Kadagathur M, Shankaraiah N. Stereoselective Aldol and Conjugate Addition Reactions Mediated by Proline‐Based Catalysts and Its Analogues: A Concise Review. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Durgesh Gurukkala Valapil
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Manasa Kadagathur
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| |
Collapse
|
5
|
Abstract
The aldol reaction which is the most important one among the C-C bond forming reactions,
is widely used by synthetic organic chemists to obtain β-hydroxycarbonyl compounds which are important
starting components for biologically active compounds in optically pure form. In this research,
five Pro-Phe derivatives were synthesized by simple amidation reactions and characterized by their
spectral data. Their catalytic activities in asymmetric aldol reaction were investigated. The catalytic
activity studies were performed with aliphatic ketones and various aromatic aldehydes. Especially, (S)-
methyl 3-mercapto-2-((S)-3-phenyl-2-((S)-pyrrolidine-2-carboxamido)propanamido)propanoate showed
good catalytic activities in water at 0oC in the presence of p-nitrobenzoic acid cocatalyst. The enantioselectivities
were up to 90.4%, the diastereomeric ratios were up to 97/3 and yields were 99%. The
results showed that these organocatalysts were promising organocatalysts for aldol reaction. Besides,
this catalyst showed its best catalytic activities in water which is also an important contribution to
green chemistry requirements.
Collapse
Affiliation(s)
- Merve Karaoglu
- Department of Chemistry, Yildiz Technical University, Davutpasa Campus, 34010 Esenler, Istanbul,Turkey
| | - Feray Aydogan
- Department of Chemistry, Yildiz Technical University, Davutpasa Campus, 34010 Esenler, Istanbul,Turkey
| | - Cigdem Yolacan
- Department of Chemistry, Yildiz Technical University, Davutpasa Campus, 34010 Esenler, Istanbul,Turkey
| |
Collapse
|
6
|
Krištofíková D, Modrocká V, Mečiarová M, Šebesta R. Green Asymmetric Organocatalysis. CHEMSUSCHEM 2020; 13:2828-2858. [PMID: 32141177 DOI: 10.1002/cssc.202000137] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/05/2020] [Indexed: 06/10/2023]
Abstract
Asymmetric organocatalysis is becoming one of the main tools for the synthesis of chiral compounds that are needed as medicines, crop protection agents, and other bioactive molecules. It can be effectively combined with various green chemistry methodologies. Intensification techniques, such as ball milling, flow, high pressure, or light, bring not only higher yields, faster reactions, and easier product isolation, but also new reactivities. More sustainable reaction media, such as ionic liquids, deep eutectic solvents, green solvent alternatives, and water, also considerably enhance the sustainability profile of many organocatalytic reactions.
Collapse
Affiliation(s)
- Dominika Krištofíková
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina, Ilkovicova 6, 842 15, Bratislava, Slovakia
| | - Viktória Modrocká
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina, Ilkovicova 6, 842 15, Bratislava, Slovakia
| | - Mária Mečiarová
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina, Ilkovicova 6, 842 15, Bratislava, Slovakia
| | - Radovan Šebesta
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina, Ilkovicova 6, 842 15, Bratislava, Slovakia
| |
Collapse
|
7
|
Cai P, Gao Z, Yin X, Luo Y, Zhao X, Pan Y. Facile enantioseparation and recognition of mandelic acid and its derivatives in self‐assembly interaction with chiral ionic liquids. J Sep Sci 2019; 42:3589-3598. [DOI: 10.1002/jssc.201900584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Pengfei Cai
- Department of ChemistryZhejiang University Hangzhou P. R. China
| | - Zhan Gao
- Department of ChemistryZhejiang University Hangzhou P. R. China
| | - Xinchi Yin
- Department of ChemistryZhejiang University Hangzhou P. R. China
| | - Yuanqing Luo
- Department of ChemistryZhejiang University Hangzhou P. R. China
| | - Xiaoyong Zhao
- Department of ChemistryZhejiang University Hangzhou P. R. China
| | - Yuanjiang Pan
- Department of ChemistryZhejiang University Hangzhou P. R. China
| |
Collapse
|
8
|
Yang L, You W, Zhao X, Guo H, Li X, Zhang J, Wang Y, Che R. Dynamic visualization of the phase transformation path in LiFePO 4 during delithiation. NANOSCALE 2019; 11:17557-17562. [PMID: 31539008 DOI: 10.1039/c9nr05623h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Rechargeable lithium-ion batteries have been widely used in portable electronic devices and electric vehicles over the last few decades. The electrochemical performance of lithium-ion batteries is mostly determined using electrode materials, which allow Li to insert/extract in their crystal structure. Conventionally, high-rate electrode materials store Li+via a solid-state reaction (i.e., the single-phase transformation path), and one exception is LiFePO4 (LFP). Although its two-phase transformation path has been widely demonstrated, the abnormal correlation between the lithiation/delithiation mechanism and the high rate performance of LFP is still controversial. Recently, the theory has suggested that the single-phase transformation path at a very low overpotential might be responsible for the abnormal phenomenon. However, direct observation of such a single-phase transformation has been rarely achieved, because once the overpotential is removed, the intermediate solid-solution phase LixFePO4 (0 < x < 1) should separate into thermodynamic LFP and FePO4 (FP). Here, the detailed delithiation path of LFP is directly observed using in situ transmission electron microscopy (TEM) based on a micro-sized solid-state battery (Pt/Li6.4La3Zr1.4Ta6O12/LFP). We first demonstrate a novel two-step solid-solution transformation path during the delithiation of LFP, showing direct evidence for the above assumption. These results provide a new insight into the solid-solution transformation mechanism of electrode materials.
Collapse
Affiliation(s)
- Liting Yang
- Laboratory of Advanced Materials, Department of Materials Science, Fudan University, Shanghai 200438, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Mirhosseini-Eshkevari B, Esnaashari M, Ghasemzadeh MA. Novel Brönsted Acidic Ionic Liquids Confined in UiO-66 Nanocages for the Synthesis of Dihydropyrido[2,3- d]Pyrimidine Derivatives under Solvent-Free Conditions. ACS OMEGA 2019; 4:10548-10557. [PMID: 31460153 PMCID: PMC6648245 DOI: 10.1021/acsomega.9b00178] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 05/17/2019] [Indexed: 05/31/2023]
Abstract
The effective and simple one-pot, three-component protocol for the synthesis of dihydropyrido[2,3-d]pyrimidine derivatives is presented using a triethylenediamine or imidazole Brönsted acidic, ionic-liquid-supported Zr metal-organic framework (TEDA/IMIZ-BAIL@UiO-66) as a green, novel, and retrievable heterogeneous catalyst under mild conditions. The multicomponent reactions of 6-amino-1,3-dimethyl uracil, various aromatic aldehydes, and acetyl acetone were conducted under solvent-free conditions so that dihydropyrido[2,3-d]pyrimidine derivatives can be obtained. It is possible to separate and purify the respective products easily using crystallization. We can recycle the catalysts six times without losing any major activity. Also, the characterization of the catalyst was done by energy-dispersive X-ray, field emission scanning electron microscopy, Fourier transform infrared, Brunauer-Emmett-Teller, X-ray diffraction, and thermogravimetric analysis analyses.
Collapse
Affiliation(s)
- Boshra Mirhosseini-Eshkevari
- Department
of Chemistry, North Tehran Branch, Islamic
Azad University, P.O. Box 1913674711, Tehran, I. R. Iran
- Department
of Chemistry, Qom Branch, Islamic Azad University, P.O. Box 37491-13191, Qom, I. R. Iran
| | - Manzarbanoo Esnaashari
- Department
of Chemistry, North Tehran Branch, Islamic
Azad University, P.O. Box 1913674711, Tehran, I. R. Iran
| | - Mohammad Ali Ghasemzadeh
- Department
of Chemistry, Qom Branch, Islamic Azad University, P.O. Box 37491-13191, Qom, I. R. Iran
| |
Collapse
|
10
|
Karimi B, Tavakolian M, Akbari M, Mansouri F. Ionic Liquids in Asymmetric Synthesis: An Overall View from Reaction Media to Supported Ionic Liquid Catalysis. ChemCatChem 2018. [DOI: 10.1002/cctc.201701919] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Babak Karimi
- Department of Chemistry; Institute for Advanced Studies in Basic Sciences (IASBS); Zanjan 45137-66731 Iran
- Research Center for Basic Sciences & Modern Technologies (RBST); Institute for Advanced Studies in Basic Sciences (IASBS); Zanjan 45137-66731 Iran
| | - Mina Tavakolian
- Department of Chemistry; Institute for Advanced Studies in Basic Sciences (IASBS); Zanjan 45137-66731 Iran
| | - Maryam Akbari
- Department of Chemistry; Institute for Advanced Studies in Basic Sciences (IASBS); Zanjan 45137-66731 Iran
| | - Fariborz Mansouri
- Department of Chemistry; Institute for Advanced Studies in Basic Sciences (IASBS); Zanjan 45137-66731 Iran
| |
Collapse
|
11
|
Mohebbi M, Salehi P, Bararjanian M, Ebrahimi SN. Noscapine-derived β-amino alcohols as new organocatalysts for enantioselective addition of diethylzinc to aldehydes. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-017-1207-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Yan CX, Zhou PP, Yang FL, Wu RZ, Yang X, Yang F, Shao X. Chiral bisoxazoline catalyzed decarboxylative aldol reactions between β-carbonyl acids and trifluoroacetaldehyde hemiacetals as well as trifluoroacetaldehyde: the mechanism, the origin of enantioselectivity and the role of a catalyst. Org Chem Front 2018. [DOI: 10.1039/c8qo00578h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The role of a catalyst in the decarboxylative aldol reactions between β-carbonyl acids and trifluoroacetaldehyde hemiacetals as well as trifluoroacetaldehyde catalyzed by chiral bisoxazoline were unveiled theoretically.
Collapse
Affiliation(s)
- Chao-Xian Yan
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Pan-Pan Zhou
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Fang-Ling Yang
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Rui-Zhi Wu
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Xing Yang
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Fan Yang
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Xiangfeng Shao
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| |
Collapse
|
13
|
|
14
|
Sonochemical synthesis of pyrido[2,3-d:6,5-d′]-dipyrimidines catalyzed by [HNMP]+[HSO4]− and their antimicrobial activity studies. J Antibiot (Tokyo) 2017; 70:845-852. [DOI: 10.1038/ja.2017.47] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 01/24/2017] [Accepted: 02/23/2017] [Indexed: 11/08/2022]
|
15
|
Tran PH, Duy Nguyen AT, Nguyen HT, Le TN. Brønsted acidic ionic liquid-promoted direct C3-acylation of N-unsubstituted indoles with acid anhydrides under microwave irradiation. RSC Adv 2017. [DOI: 10.1039/c7ra11362e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A green and efficient method for the synthesis of 3-acylindoles using a Brønsted acidic ionic liquid under microwave irradiation has been developed.
Collapse
Affiliation(s)
- Phuong Hoang Tran
- Department of Organic Chemistry
- Faculty of Chemistry
- University of Science
- Vietnam National University
- Ho Chi Minh City 70000
| | - Anh-Thanh Duy Nguyen
- Department of Organic Chemistry
- Faculty of Chemistry
- University of Science
- Vietnam National University
- Ho Chi Minh City 70000
| | - Hai Truong Nguyen
- Department of Organic Chemistry
- Faculty of Chemistry
- University of Science
- Vietnam National University
- Ho Chi Minh City 70000
| | - Thach Ngoc Le
- Department of Organic Chemistry
- Faculty of Chemistry
- University of Science
- Vietnam National University
- Ho Chi Minh City 70000
| |
Collapse
|