1
|
Usoltsev O, Stoian D, Skorynina A, Kozyr E, Njoroge PN, Pellegrini R, Groppo E, van Bokhoven JA, Bugaev A. Restructuring of Palladium Nanoparticles during Oxidation by Molecular Oxygen. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401184. [PMID: 38884188 DOI: 10.1002/smll.202401184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/02/2024] [Indexed: 06/18/2024]
Abstract
An interplay between Pd and PdO and their spatial distribution inside the particles are relevant for numerous catalytic reactions. Using in situ time-resolved X-ray absorption spectroscopy (XAS) supported by theoretical simulations, a mechanistic picture of the structural evolution of 2.3 nm palladium nanoparticles upon their exposure to molecular oxygen is provided. XAS analysis revealed the restructuring of the fcc-like palladium surface into the 4-coordinated structure of palladium oxide upon absorption of oxygen from the gas phase and formation of core@shell Pd@PdO structures. The reconstruction starts from the low-coordinated sites at the edges of palladium nanoparticles. Formation of the PdO shell does not affect the average Pd‒Pd coordination numbers, since the decrease of the size of the metallic core is compensated by a more spherical shape of the oxidized nanoparticles due to a weaker interaction with the support. The metallic core is preserved below 200 °C even after continuous exposure to oxygen, with its size decreasing insignificantly upon increasing the temperature, while above 200 °C, bulk oxidation proceeds. The Pd‒Pd distances in the metallic phase progressively decrease upon increasing the fraction of the Pd oxide due to the alignment of the cell parameters of the two phases.
Collapse
Affiliation(s)
- Oleg Usoltsev
- ALBA Synchrotron, Cerdanyola del Valles, Barcelona, 08290, Spain
| | - Dragos Stoian
- The Swiss-Norwegian Beamlines (SNBL) at ESRF, BP 220, Grenoble, 38043, France
| | - Alina Skorynina
- ALBA Synchrotron, Cerdanyola del Valles, Barcelona, 08290, Spain
| | - Elizaveta Kozyr
- Department of Chemistry, INSTM and NIS Centre, University of Torino, via Quarello 15A, Turin, 10125, Italy
| | - Peter N Njoroge
- Department of Chemistry, University of Oslo, Sem Saelandsvei 26, Oslo, 0315, Norway
| | - Riccardo Pellegrini
- Chimet S.p.A. - Catalyst Division, Via di Pescaiola 74, Viciomaggio Arezzo, 52041, Italy
| | - Elena Groppo
- Department of Chemistry, INSTM and NIS Centre, University of Torino, via Quarello 15A, Turin, 10125, Italy
| | - Jeroen A van Bokhoven
- Paul Scherrer Institute, Villigen, 5232, Switzerland
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, Zurich, 8093, Switzerland
| | - Aram Bugaev
- Paul Scherrer Institute, Villigen, 5232, Switzerland
| |
Collapse
|
2
|
Boateng E, McGuire C, Xu R, Jiang DT, Chen A. Effects of Heteroatom Doping on the Electrochemical Hydrogen Uptake and Release of Pd-Decorated Reduced Graphene Oxide. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47703-47712. [PMID: 39190043 DOI: 10.1021/acsami.4c10351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Heteroatom doping has been widely recognized as a key strategy for improving the electrochemical properties of graphene-based materials for hydrogen storage. However, a precise understanding of how heteroatom doping influences catalytic performance, specifically regarding the intricate effects of doping-induced electron redistribution, has been lacking. Here, we report on a comprehensive exploration of the electrochemical performance enhancement in Pd-decorated reduced graphene oxide (rGO) nanocomposites through fluorine (F) or nitrogen (N) doping. Various analytical techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray (EDX) spectroscopy, Raman spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), X-ray absorption near edge structure (XANES), and extended X-ray absorption fine structure (EXAFS) were employed to thoroughly characterize the synthesized nanocomposites. The findings revealed that either F or N doping effectively addressed clustering issues of Pd nanoparticles formed on the rGO surface, resulting in improved homogeneity of Pd distribution. Electrochemical studies provided crucial insights into hydrogen adsorption-desorption behaviors. The heteroatom doped nanocomposites, Pd/N-rGO and Pd/F-rGO, exhibited superior electrochemical performance, which can be attributed to the increase of the active sites due to the N-/F-doping, respectively. The hydrogen discharge capacities of Pd/N-rGO (80.9 mAh g-1) and Pd/F-rGO (25.0 mAh g-1) nanocomposites were determined to be over 4.0 and 1.2 times higher than that of the Pd/rGO (20.1 mAh g-1), respectively. The distinctive electrochemical performances observed between the two types of heteroatom-containing nanocomposites highlight the subtle structural modifications of Pd nanoparticles as the key factor influencing performance. This research contributes essential knowledge to the evolving field of hydrogen storage materials, emphasizing the promising potential of heteroatom-doped Pd-decorated rGO nanocomposites for advancing clean and sustainable energy solutions.
Collapse
Affiliation(s)
- Emmanuel Boateng
- Electrochemical Technology Center, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Cameron McGuire
- Department of Physics, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Ruzhen Xu
- Electrochemical Technology Center, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - De-Tong Jiang
- Department of Physics, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Aicheng Chen
- Electrochemical Technology Center, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
3
|
Phillips EV, Tricker AW, Stavitski E, Hatzell M, Sievers C. Mechanocatalytic Hydrogenolysis of the Lignin Model Dimer Benzyl Phenyl Ether over Supported Palladium Catalysts. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:12306-12312. [PMID: 39175605 PMCID: PMC11337168 DOI: 10.1021/acssuschemeng.4c03590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/24/2024]
Abstract
This work demonstrates the mechanocatalytic hydrogenolysis of the ether bond in the lignin model compound benzyl phenyl ether (BPE) and hardwood lignin isolated by hydrolysis with supercritical water. Pd catalysts with 4 wt % loading on Al2O3 and SiO2 supports achieve 100% conversion of BPE with a toluene production rate of (2.6-2.9) × 10-5 mol·min-1. The formation of palladium hydrides under H2 gas flow contributes to an increase in the turnover frequency by a factor of up to 300 compared to Ni on silica-alumina. While a near-quantitative toluene yield is obtained, some of the phenolic products remain adsorbed on the catalyst.
Collapse
Affiliation(s)
- Erin V. Phillips
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | | | - Eli Stavitski
- National
Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Marta Hatzell
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- George
W. Woodruff School of Mechanical Engineering, Atlanta, Georgia 30318, United States
| | - Carsten Sievers
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
4
|
Usoltsev O, Tereshchenko A, Skorynina A, Kozyr E, Soldatov A, Safonova O, Clark AH, Ferri D, Nachtegaal M, Bugaev A. Machine Learning for Quantitative Structural Information from Infrared Spectra: The Case of Palladium Hydride. SMALL METHODS 2024; 8:e2301397. [PMID: 38295064 DOI: 10.1002/smtd.202301397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/09/2024] [Indexed: 02/02/2024]
Abstract
Infrared spectroscopy (IR) is a widely used technique enabling to identify specific functional groups in the molecule of interest based on their characteristic vibrational modes or the presence of a specific adsorption site based on the characteristic vibrational mode of an adsorbed probe molecule. The interpretation of an IR spectrum is generally carried out within a fingerprint paradigm by comparing the observed spectral features with the features of known references or theoretical calculations. This work demonstrates a method for extracting quantitative structural information beyond this approach by application of machine learning (ML) algorithms. Taking palladium hydride formation as an example, Pd-H pressure-composition isotherms are reconstructed using IR data collected in situ in diffuse reflectance using CO molecule as a probe. To the best of the knowledge, this is the first example of the determination of continuous structural descriptors (such as interatomic distance and stoichiometric coefficient) from the fine structure of vibrational spectra, which opens new possibilities of using IR spectra for structural analysis.
Collapse
Affiliation(s)
- Oleg Usoltsev
- ALBA Synchrotron, Cerdanyola del Valles, Barcelona, 08290, Spain
| | | | - Alina Skorynina
- ALBA Synchrotron, Cerdanyola del Valles, Barcelona, 08290, Spain
| | | | - Alexander Soldatov
- Southern Federal University, Sladkova 178/24, Rostov-on-Don, 344090, Russia
| | - Olga Safonova
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| | - Adam H Clark
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| | - Davide Ferri
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| | - Maarten Nachtegaal
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| | - Aram Bugaev
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| |
Collapse
|
5
|
Xu YN, Mei B, Xu Q, Fu HQ, Zhang XY, Liu PF, Jiang Z, Yang HG. In situ/Operando Synchrotron Radiation Analytical Techniques for CO 2/CO Reduction Reaction: From Atomic Scales to Mesoscales. Angew Chem Int Ed Engl 2024; 63:e202404213. [PMID: 38600431 DOI: 10.1002/anie.202404213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/12/2024]
Abstract
Electrocatalytic carbon dioxide/carbon monoxide reduction reaction (CO(2)RR) has emerged as a prospective and appealing strategy to realize carbon neutrality for manufacturing sustainable chemical products. Developing highly active electrocatalysts and stable devices has been demonstrated as effective approach to enhance the conversion efficiency of CO(2)RR. In order to rationally design electrocatalysts and devices, a comprehensive understanding of the intrinsic structure evolution within catalysts and micro-environment change around electrode interface, particularly under operation conditions, is indispensable. Synchrotron radiation has been recognized as a versatile characterization platform, garnering widespread attention owing to its high brightness, elevated flux, excellent directivity, strong polarization and exceptional stability. This review systematically introduces the applications of synchrotron radiation technologies classified by radiation sources with varying wavelengths in CO(2)RR. By virtue of in situ/operando synchrotron radiationanalytical techniques, we also summarize relevant dynamic evolution processes from electronic structure, atomic configuration, molecular adsorption, crystal lattice and devices, spanning scales from the angstrom to the micrometer. The merits and limitations of diverse synchrotron characterization techniques are summarized, and their applicable scenarios in CO(2)RR are further presented. On the basis of the state-of-the-art fourth-generation synchrotron facilities, a perspective for further deeper understanding of the CO(2)RR process using synchrotron radiation analytical techniques is proposed.
Collapse
Affiliation(s)
- Yi Ning Xu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Bingbao Mei
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201800, P. R. China
| | - Qiucheng Xu
- Surface Physics and Catalysis (Surf Cat) Section, Department of Physics, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Huai Qin Fu
- Center for Catalysis and Clean Energy, Gold Coast Campus, Griffith University, Gold Coast, QLD 4222, Australia
| | - Xin Yu Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Peng Fei Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Zheng Jiang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Hua Gui Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| |
Collapse
|
6
|
Polyanichenko DS, Protsenko BO, Egil NV, Kartashov OO. Deep Reinforcement Learning Environment Approach Based on Nanocatalyst XAS Diagnostics Graphic Formalization. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5321. [PMID: 37570025 PMCID: PMC10419857 DOI: 10.3390/ma16155321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023]
Abstract
The most in-demand instrumental methods for new functional nanomaterial diagnostics employ synchrotron radiation, which is used to determine a material's electronic and local atomic structure. The high time and resource costs of researching at international synchrotron radiation centers and the problems involved in developing an optimal strategy and in planning the control of the experiments are acute. One possible approach to solving these problems involves the use of deep reinforcement learning agents. However, this approach requires the creation of a special environment that provides a reliable level of response to the agent's actions. As the physical experimental environment of nanocatalyst diagnostics is potentially a complex multiscale system, there are no unified comprehensive representations that formalize the structure and states as a single digital model. This study proposes an approach based on the decomposition of the experimental system into the original physically plausible nodes, with subsequent merging and optimization as a metagraphic representation with which to model the complex multiscale physicochemical environments. The advantage of this approach is the possibility to directly use the numerical model to predict the system states and to optimize the experimental conditions and parameters. Additionally, the obtained model can form the basic planning principles and allow for the optimization of the search for the optimal strategy with which to control the experiment when it is used as a training environment to provide different abstraction levels of system state reactions.
Collapse
Affiliation(s)
- Dmitry S. Polyanichenko
- The Smart Materials Research Institute, Southern Federal University, 178/24 Sladkova, 344090 Rostov-on-Don, Russia; (B.O.P.); (N.V.E.); (O.O.K.)
| | | | | | | |
Collapse
|
7
|
Uno K, Itoh T, Sato H, Lloyd-Jones GC, Orito Y. Direct Observation of Palladium Leaching from Pd/C by a Simple Method: X-ray Absorption Spectroscopy of Heterogeneous Mixtures. ACS OMEGA 2023; 8:21787-21792. [PMID: 37360423 PMCID: PMC10286095 DOI: 10.1021/acsomega.3c01343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023]
Abstract
Herein, we show the detailed behavior of palladium leaching from palladium on charcoal by aqueous HCl, directly observed by X-ray absorption spectroscopy measurement employing a simplified reaction setup. While Pd0 is not affected by the addition of HCl, palladium oxide in nanoparticles readily reacts with HCl to form the ionic species [PdIICl4]2-, even though these ions mostly remain adsorbed on the surface of activated charcoal and can only be detected at a low level in the solution phase. This finding provides a new aspect for control of the leaching behavior and robust usage of palladium on charcoal in organic reactions.
Collapse
Affiliation(s)
- Kenichi Uno
- Process
Technology Research Laboratories, Daiichi
Sankyo Co., Ltd., 1-12-1
Shinomiya, Hiratsuka, Kanagawa 254-0014, Japan
| | - Takanori Itoh
- Physical
Properties & Chemical Analysis Department, NISSAN ARC, LTD., 1,
Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Hidenori Sato
- Physical
Properties & Chemical Analysis Department, NISSAN ARC, LTD., 1,
Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Guy C. Lloyd-Jones
- School
of Chemistry, The University of Edinburgh, Joseph Black Building, David Brewster
Road, Edinburgh EH9 1FJ, U.K.
| | - Yuya Orito
- Process
Technology Research Laboratories, Daiichi
Sankyo Co., Ltd., 1-12-1
Shinomiya, Hiratsuka, Kanagawa 254-0014, Japan
| |
Collapse
|
8
|
Asedegbega-Nieto E, Iglesias-Juez A, Di Michiel M, Fernandez-Garcia M, Rodriguez-Ramos I, Guerrero-Ruiz A. Dynamics of Pd Subsurface Hydride Formation and Their Impact on the Selectivity Control for Selective Butadiene Hydrogenation Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1099. [PMID: 36985993 PMCID: PMC10058484 DOI: 10.3390/nano13061099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Structure-sensitive catalyzed reactions can be influenced by a number of parameters. So far, it has been established that the formation of Pd-C species is responsible for the behavior of Pd nanoparticles employed as catalysts in a butadiene partial hydrogenation reaction. In this study, we introduce some experimental evidence indicating that subsurface Pd hydride species are governing the reactivity of this reaction. In particular, we detect that the extent of formation/decomposition of PdHx species is very sensitive to the Pd nanoparticle aggregate dimensions, and this finally controls the selectivity in this process. The main and direct methodology applied to determine this reaction mechanism step is time-resolved high-energy X-ray diffraction (HEXRD).
Collapse
Affiliation(s)
- Esther Asedegbega-Nieto
- Dpto. Química Inorgánica y Técnica, Facultad de Ciencias, UNED, Av. de Esparta s/n, 28232 Las Rozas, Madrid, Spain
| | - Ana Iglesias-Juez
- Instituto de Catálisis y Petroleoquímica, CSIC, c/Marie Curie No. 2, Cantoblanco, 28049 Madrid, Spain
| | - Marco Di Michiel
- ESRF—The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Marcos Fernandez-Garcia
- Instituto de Catálisis y Petroleoquímica, CSIC, c/Marie Curie No. 2, Cantoblanco, 28049 Madrid, Spain
| | | | - Antonio Guerrero-Ruiz
- Dpto. Química Inorgánica y Técnica, Facultad de Ciencias, UNED, Av. de Esparta s/n, 28232 Las Rozas, Madrid, Spain
| |
Collapse
|
9
|
Fovanna T, Nachtegaal M, Clark AH, Kröcher O, Ferri D. Preparation, Quantification, and Reaction of Pd Hydrides on Pd/Al 2O 3 in Liquid Environment. ACS Catal 2023. [DOI: 10.1021/acscatal.2c04791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- Thibault Fovanna
- Paul Scherrer Institut, Forschungsstrasse 111, CH-5232 Villigen PSI, Switzerland
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Maarten Nachtegaal
- Paul Scherrer Institut, Forschungsstrasse 111, CH-5232 Villigen PSI, Switzerland
| | - Adam H. Clark
- Paul Scherrer Institut, Forschungsstrasse 111, CH-5232 Villigen PSI, Switzerland
| | - Oliver Kröcher
- Paul Scherrer Institut, Forschungsstrasse 111, CH-5232 Villigen PSI, Switzerland
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Davide Ferri
- Paul Scherrer Institut, Forschungsstrasse 111, CH-5232 Villigen PSI, Switzerland
| |
Collapse
|
10
|
Nakaya Y, Hayashida E, Shi R, Shimizu KI, Furukawa S. Interstitial Carbon Dopant in Palladium-Gold Alloy Boosting the Catalytic Performance in Vinyl Acetate Monomer Synthesis. J Am Chem Soc 2023; 145:2985-2998. [PMID: 36693190 DOI: 10.1021/jacs.2c11481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Vinyl acetate monomer (VAM), an important chemical intermediate in industry, is produced by the well-established commercial process of acetoxylation of ethylene with Pd-Au/SiO2 and a KOAc promoter. No paper has since decades defined the true effects of Au and KOAc, despite numerous attempts to clarify them. The role of subsurface carbon as a catalyst booster for enhanced catalytic performance in VAM synthesis was found by us for the first time. X-ray diffraction and X-ray absorption fine structure studies revealed that carbon atoms spontaneously doped into the Pd-Au alloy lattice while maintaining the alloy's size, metallic state, and alloy composition. Additionally, during the process, the KOAc addition dramatically raised the equilibrium carbide fraction. Because of the high carbide fraction, KOAc/Pd0.8Au0.2/SiO2 had a 5.6-fold higher formation rate (89.0% selectivity) than Pd0.8Au0.2/SiO2 (69.2% selectivity) due to high carbide fraction. Surprisingly, kinetic and theoretical analyses showed that the coupling of acetate and ethylene, which is a rate-determining step, is effectively promoted by the synergistic contributions of Au (electronic/geometric effects) and interstitial carbon (electronic effect). Additionally, the synergy inhibits ethylene dehydrogenation, which ultimately slows the formation of CO2. The contentious debates about the roles of Au and KOAc in the acetoxylation of ethylene have been resolved thanks to experimental and theoretical insights into the roles of Pd-Au formation, Au/Pd ratio, and interstitial carbon atoms. These insights also open the door for the logical design of catalysts with desirable catalytic performance.
Collapse
Affiliation(s)
- Yuki Nakaya
- Institute for Catalysis, Hokkaido University, N-21, W-10, Kita-ku, Sapporo001-0021, Japan
| | - Eigo Hayashida
- Institute for Catalysis, Hokkaido University, N-21, W-10, Kita-ku, Sapporo001-0021, Japan
| | - Ruikun Shi
- Institute for Catalysis, Hokkaido University, N-21, W-10, Kita-ku, Sapporo001-0021, Japan
| | - Ken-Ichi Shimizu
- Institute for Catalysis, Hokkaido University, N-21, W-10, Kita-ku, Sapporo001-0021, Japan
| | - Shinya Furukawa
- Institute for Catalysis, Hokkaido University, N-21, W-10, Kita-ku, Sapporo001-0021, Japan.,Department of Research Promotion, Japan Science and Technology Agency, Chiyoda, Tokyo102-0076, Japan
| |
Collapse
|
11
|
Vottero E, Carosso M, Pellegrini R, Jiménez-Ruiz M, Groppo E, Piovano A. Inelastic neutron scattering study of the H2 interaction with carbon-supported Pt and Pd catalysts. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
12
|
Diercks JS, Herranz J, Georgi M, Diklić N, Chauhan P, Ebner K, Clark AH, Nachtegaal M, Eychmüller A, Schmidt TJ. Interplay between Surface-Adsorbed CO and Bulk Pd Hydride under CO 2-Electroreduction Conditions. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Justus S. Diercks
- Electrochemistry Laboratory, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Juan Herranz
- Electrochemistry Laboratory, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Maximilian Georgi
- Physical Chemistry, Technical University Dresden, 01062 Dresden, Germany
| | - Nataša Diklić
- Electrochemistry Laboratory, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Piyush Chauhan
- Electrochemistry Laboratory, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Kathrin Ebner
- Electrochemistry Laboratory, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Adam H. Clark
- Laboratory for Synchrotron Radiation and Femtochemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Maarten Nachtegaal
- Laboratory for Synchrotron Radiation and Femtochemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | | | - Thomas J. Schmidt
- Electrochemistry Laboratory, Paul Scherrer Institut, 5232 Villigen, Switzerland
- Laboratory of Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
13
|
Lee JD, Miller JB, Shneidman AV, Sun L, Weaver JF, Aizenberg J, Biener J, Boscoboinik JA, Foucher AC, Frenkel AI, van der Hoeven JES, Kozinsky B, Marcella N, Montemore MM, Ngan HT, O'Connor CR, Owen CJ, Stacchiola DJ, Stach EA, Madix RJ, Sautet P, Friend CM. Dilute Alloys Based on Au, Ag, or Cu for Efficient Catalysis: From Synthesis to Active Sites. Chem Rev 2022; 122:8758-8808. [PMID: 35254051 DOI: 10.1021/acs.chemrev.1c00967] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The development of new catalyst materials for energy-efficient chemical synthesis is critical as over 80% of industrial processes rely on catalysts, with many of the most energy-intensive processes specifically using heterogeneous catalysis. Catalytic performance is a complex interplay of phenomena involving temperature, pressure, gas composition, surface composition, and structure over multiple length and time scales. In response to this complexity, the integrated approach to heterogeneous dilute alloy catalysis reviewed here brings together materials synthesis, mechanistic surface chemistry, reaction kinetics, in situ and operando characterization, and theoretical calculations in a coordinated effort to develop design principles to predict and improve catalytic selectivity. Dilute alloy catalysts─in which isolated atoms or small ensembles of the minority metal on the host metal lead to enhanced reactivity while retaining selectivity─are particularly promising as selective catalysts. Several dilute alloy materials using Au, Ag, and Cu as the majority host element, including more recently introduced support-free nanoporous metals and oxide-supported nanoparticle "raspberry colloid templated (RCT)" materials, are reviewed for selective oxidation and hydrogenation reactions. Progress in understanding how such dilute alloy catalysts can be used to enhance selectivity of key synthetic reactions is reviewed, including quantitative scaling from model studies to catalytic conditions. The dynamic evolution of catalyst structure and composition studied in surface science and catalytic conditions and their relationship to catalytic function are also discussed, followed by advanced characterization and theoretical modeling that have been developed to determine the distribution of minority metal atoms at or near the surface. The integrated approach demonstrates the success of bridging the divide between fundamental knowledge and design of catalytic processes in complex catalytic systems, which can accelerate the development of new and efficient catalytic processes.
Collapse
Affiliation(s)
- Jennifer D Lee
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Jeffrey B Miller
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Anna V Shneidman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Lixin Sun
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Jason F Weaver
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Joanna Aizenberg
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Juergen Biener
- Nanoscale Synthesis and Characterization Laboratory, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - J Anibal Boscoboinik
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Alexandre C Foucher
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Anatoly I Frenkel
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States.,Division of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Jessi E S van der Hoeven
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Boris Kozinsky
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Nicholas Marcella
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Matthew M Montemore
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Hio Tong Ngan
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Christopher R O'Connor
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Cameron J Owen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Dario J Stacchiola
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Eric A Stach
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Robert J Madix
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Philippe Sautet
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States.,Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Cynthia M Friend
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
14
|
Zhang C, Liu W, Chen C, Ni P, Wang B, Jiang Y, Lu Y. Emerging interstitial/substitutional modification of Pd-based nanomaterials with nonmetallic elements for electrocatalytic applications. NANOSCALE 2022; 14:2915-2942. [PMID: 35138321 DOI: 10.1039/d1nr06570j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Palladium (Pd)-based nanomaterials have been identified as potential candidates for various types of electrocatalytic reaction, but most of them typically exhibit unsatisfactory performances. Recently, extensive theoretical and experimental studies have demonstrated that the interstitial/substitutional modification of Pd-based nanomaterials with nonmetallic atoms (H, B, C, N, P, S) has a significant impact on their electronic structure and thus leads to the rapid development of one kind of promising catalyst for various electrochemical reactions. Considering the remarkable progress in this area, we highlight the most recent progress regarding the innovative synthesis and advanced characterization methods of nonmetallic atom-doped Pd-based nanomaterials and provide insights into their electrochemical applications. What's more, the unique structure- and component-dependent electrochemical performance and the underlying mechanisms are also discussed. Furthermore, a brief conclusion about the recent progress achieved in this field as well as future perspectives and challenges are provided.
Collapse
Affiliation(s)
- Chenghui Zhang
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China.
| | - Wendong Liu
- Tianjin Key Laboratory of Molecular Optoelectronic, Department of Chemistry, Tianjin University, Tianjin 300072, China
| | - Chuanxia Chen
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China.
| | - Pengjuan Ni
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China.
| | - Bo Wang
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China.
| | - Yuanyuan Jiang
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China.
| | - Yizhong Lu
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China.
| |
Collapse
|
15
|
Stuyck W, Bugaev AL, Nelis T, de Oliveira-Silva R, Smolders S, Usoltsev OA, Arenas Esteban D, Bals S, Sakellariou D, De Vos D. Sustainable formation of tricarballylic acid from citric acid over highly stable Pd/Nb2O5.nH2O catalysts. J Catal 2022. [DOI: 10.1016/j.jcat.2022.02.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Liu Y, Zhang H, Wijpkema ASG, Coumans FJAG, Meng L, Uslamin EA, Longo A, Hensen EJM, Kosinov N. Understanding the Preparation and Reactivity of Mo/ZSM-5 Methane Dehydroaromatization Catalysts. Chemistry 2022; 28:e202103894. [PMID: 34822193 PMCID: PMC9299926 DOI: 10.1002/chem.202103894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Indexed: 11/14/2022]
Abstract
Methane dehydroaromatization is a promising reaction for the direct conversion of methane to liquid hydrocarbons. The active sites and the mechanism of this reaction remain controversial. This work is focused on the operando X-ray absorption near edge structure spectroscopy analysis of conventional Mo/ZSM-5 catalysts during their whole lifetime. Complemented by other characterization techniques, we derived spectroscopic descriptors of molybdenum precursor decomposition and its exchange with zeolite Brønsted acid sites. We found that the reduction of Mo-species proceeds in two steps and the active sites are of similar nature, regardless of the Mo content. Furthermore, the ZSM-5 unit cell contracts at the beginning of the reaction, which coincides with benzene formation and it is likely related to the formation of hydrocarbon pool intermediates. Finally, although reductive regeneration of used catalysts via methanation is less effective as compared to combustion of coke, it does not affect the structure of the catalysts.
Collapse
Affiliation(s)
- Yujie Liu
- Laboratory of Inorganic Materials & CatalysisDepartment of Chemical Engineering and ChemistryEindhoven University of TechnologyP.O. Box 5135600 MBEindhovenNetherlands
| | - Hao Zhang
- Laboratory of Inorganic Materials & CatalysisDepartment of Chemical Engineering and ChemistryEindhoven University of TechnologyP.O. Box 5135600 MBEindhovenNetherlands
| | - Alexandra S. G. Wijpkema
- Laboratory of Inorganic Materials & CatalysisDepartment of Chemical Engineering and ChemistryEindhoven University of TechnologyP.O. Box 5135600 MBEindhovenNetherlands
| | - Ferdy J. A. G. Coumans
- Laboratory of Inorganic Materials & CatalysisDepartment of Chemical Engineering and ChemistryEindhoven University of TechnologyP.O. Box 5135600 MBEindhovenNetherlands
| | - Lingqian Meng
- Laboratory of Inorganic Materials & CatalysisDepartment of Chemical Engineering and ChemistryEindhoven University of TechnologyP.O. Box 5135600 MBEindhovenNetherlands
| | - Evgeny A. Uslamin
- Laboratory of Inorganic Materials & CatalysisDepartment of Chemical Engineering and ChemistryEindhoven University of TechnologyP.O. Box 5135600 MBEindhovenNetherlands
| | - Alessandro Longo
- European Synchrotron Radiation Facility71 Avenue des Martyrs38000GrenobleFrance
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN)-CNR UOS PalermoVia Ugo La Malfa, 15390146PalermoItaly
| | - Emiel J. M. Hensen
- Laboratory of Inorganic Materials & CatalysisDepartment of Chemical Engineering and ChemistryEindhoven University of TechnologyP.O. Box 5135600 MBEindhovenNetherlands
| | - Nikolay Kosinov
- Laboratory of Inorganic Materials & CatalysisDepartment of Chemical Engineering and ChemistryEindhoven University of TechnologyP.O. Box 5135600 MBEindhovenNetherlands
| |
Collapse
|
17
|
Shittu TD, Ayodele OB. Catalysis of semihydrogenation of acetylene to ethylene: current trends, challenges, and outlook. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-021-2113-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Sun M, Wang F, Hu J, Lv G, Zhang X. N-containing silane coupling agent-assisted synthesis of highly dispersed and stable PdC phase for semi-hydrogenation of acetylene. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.116939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Xia GJ, Wang YG. Solvent promotion on the metal-support interaction and activity of Pd@ZrO2 Catalyst: Formation of metal hydrides as the new catalytic active phase at the Solid-Liquid interface. J Catal 2021. [DOI: 10.1016/j.jcat.2021.10.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
|
21
|
Oberhauser W, Evangelisti C, Capozzoli L, Manca G, Casaletto MP, Vizza F. Selectivity Switch in the Aerobic 1,2‐Propandiol Oxidation Catalyzed by Diamine‐Stabilized Palladium Nanoparticles. ChemCatChem 2021. [DOI: 10.1002/cctc.202100309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Werner Oberhauser
- Istituto di Chimica dei Composti Organometallici (CNR-ICCOM) Via Madonna del Piano 10 50019 Sesto Fiorentino Italy
| | - Claudio Evangelisti
- Istituto di Chimica dei Composti Organometallici (CNR-ICCOM) U.O.S. di Pisa Via G. Moruzzi 1 56124 Pisa Italy
| | - Laura Capozzoli
- Istituto di Chimica dei Composti Organometallici (CNR-ICCOM) Via Madonna del Piano 10 50019 Sesto Fiorentino Italy
| | - Gabriele Manca
- Istituto di Chimica dei Composti Organometallici (CNR-ICCOM) Via Madonna del Piano 10 50019 Sesto Fiorentino Italy
| | - Maria Pia Casaletto
- Istituto per lo Studio dei Materiali NanoStrutturati (CNR-ISMN) Via Ugo La Malfa 153 90146 Palermo Italy
| | - Francesco Vizza
- Istituto di Chimica dei Composti Organometallici (CNR-ICCOM) Via Madonna del Piano 10 50019 Sesto Fiorentino Italy
| |
Collapse
|
22
|
Panchal M, Callison J, Skukauskas V, Gianolio D, Cibin G, York APE, Schuster ME, Hyde TI, Collier P, Catlow CRA, Gibson EK. Operando XAFS investigation on the effect of ash deposition on three-way catalyst used in gasoline particulate filters and the effect of the manufacturing process on the catalytic activity. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:284001. [PMID: 33949972 DOI: 10.1088/1361-648x/abfe16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
Platinum group metals such as palladium and rhodium based catalysts are currently being implemented in gasoline particulate filter (GPF) autoexhaust after treatment systems. However, little is known about how the trapped particulate matter, such as the incombustible ash, interacts with the catalyst and so may affect its performance. Thisoperandostudy follows the evolution of the Pd found in two different model GPF systems: one containing ash components extracted from a GPF and another from a catalyst washcoat prior to adhesion onto the GPF. We show that the catalytic activity of the two systems vary when compared with a 0 g ash containing GPF. Compared to the 0 g ash sample the 20 g ash containing sample had a higher CO light off temperature, in addition, an oscillation profile for CO, CO2and O2was observed, which is speculated to be a combination of CO oxidation, C deposition via a Boudouard reaction and further partial oxidation of the deposited species to CO. During the ageing procedure the washcoat sample reduces NO at a lower temperature than the 0 g ash sample. However, post ageing the 0 g ash sample recovers and both samples reduce NO at 310 °C. In comparison, the 20 g ash GPF sample maintains a higher NO reduction temperature of 410 °C post ageing, implying that the combination of high temperature ageing and presence of ash has an irreversible negative effect on catalyst performance.
Collapse
Affiliation(s)
- Monik Panchal
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxon OX11 0FA, United Kingdom
| | - June Callison
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxon OX11 0FA, United Kingdom
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, United Kingdom
| | - Vainius Skukauskas
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxon OX11 0FA, United Kingdom
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - Diego Gianolio
- Diamond Light Source, Harwell Science & Innovation Campus, Oxfordshire OX11 0DE, United Kingdom
| | - Giannantonio Cibin
- Diamond Light Source, Harwell Science & Innovation Campus, Oxfordshire OX11 0DE, United Kingdom
| | - Andrew P E York
- Johnson Matthey Technology Centre, Blount's Court, Sonning Common, Reading, RG4 9NH, United Kingdom
| | - Manfred E Schuster
- Johnson Matthey Technology Centre, Blount's Court, Sonning Common, Reading, RG4 9NH, United Kingdom
| | - Timothy I Hyde
- Johnson Matthey Technology Centre, Blount's Court, Sonning Common, Reading, RG4 9NH, United Kingdom
| | - Paul Collier
- Johnson Matthey Technology Centre, Blount's Court, Sonning Common, Reading, RG4 9NH, United Kingdom
| | - C Richard A Catlow
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxon OX11 0FA, United Kingdom
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, United Kingdom
| | - Emma K Gibson
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxon OX11 0FA, United Kingdom
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| |
Collapse
|
23
|
Bugaev AL, Usoltsev OA, Guda AA, Lomachenko KA, Brunelli M, Groppo E, Pellegrini R, Soldatov AV, van Bokhoven JA. Hydrogenation of ethylene over palladium: evolution of the catalyst structure by operando synchrotron-based techniques. Faraday Discuss 2021; 229:197-207. [PMID: 33656030 DOI: 10.1039/c9fd00139e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Palladium-based catalysts are exploited on an industrial scale for the selective hydrogenation of hydrocarbons. The formation of palladium carbide and hydride phases under reaction conditions changes the catalytic properties of the material, which points to the importance of operando characterization for determining the relation between the relative fractions of the two phases and the catalyst performance. We present a combined time-resolved characterization by X-ray absorption spectroscopy (in both near-edge and extended regions) and X-ray diffraction of a working palladium-based catalyst during the hydrogenation of ethylene in a wide range of partial pressures of ethylene and hydrogen. Synergistic coupling of multiple techniques allowed us to follow the structural evolution of the palladium lattice as well as the transitions between the metallic, hydride and carbide phases of palladium. The nanometric dimensions of the particles resulted in the considerable contribution of both surface and bulk carbides to the X-ray absorption spectra. During the reaction, palladium carbide is formed, which does not lead to a loss of activity. Unusual contraction of the unit cell parameter of the palladium lattice in the spent catalyst was observed upon increasing hydrogen partial pressure.
Collapse
Affiliation(s)
- Aram L Bugaev
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, Rostov-on-Don, 344090, Russia.
| | - Oleg A Usoltsev
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, Rostov-on-Don, 344090, Russia.
| | - Alexander A Guda
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, Rostov-on-Don, 344090, Russia.
| | - Kirill A Lomachenko
- BM23/ID24, European Synchrotron Radiation Facility, 71 avenue des Martyrs, 38043 Grenoble Cedex 9, France
| | - Michela Brunelli
- DUBBLE CRG at the European Synchrotron Radiation Facility, Netherlands Organization for Scientific Research (NWO), 71 Avenue des Martyrs, 38042 Grenoble Cedex 9, France
| | - Elena Groppo
- Department of Chemistry, NIS Interdepartmental Centre, University of Turin, via P. Giuria 7, 10125 Turin, Italy
| | - Riccardo Pellegrini
- Chimet S.p.A. - Catalyst Division, Via di Pescaiola 74, 52041 Viciomaggio Arezzo, Italy
| | - Alexander V Soldatov
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, Rostov-on-Don, 344090, Russia.
| | - Jeroen A van Bokhoven
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland and Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| |
Collapse
|
24
|
Routh PK, Liu Y, Marcella N, Kozinsky B, Frenkel AI. Latent Representation Learning for Structural Characterization of Catalysts. J Phys Chem Lett 2021; 12:2086-2094. [PMID: 33620230 DOI: 10.1021/acs.jpclett.0c03792] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Supervised machine learning-enabled mapping of the X-ray absorption near edge structure (XANES) spectra to local structural descriptors offers new methods for understanding the structure and function of working nanocatalysts. We briefly summarize a status of XANES analysis approaches by supervised machine learning methods. We present an example of an autoencoder-based, unsupervised machine learning approach for latent representation learning of XANES spectra. This new approach produces a lower-dimensional latent representation, which retains a spectrum-structure relationship that can be eventually mapped to physicochemical properties. The latent space of the autoencoder also provides a pathway to interpret the information content "hidden" in the X-ray absorption coefficient. Our approach (that we named latent space analysis of spectra, or LSAS) is demonstrated for the supported Pd nanoparticle catalyst studied during the formation of Pd hydride. By employing the low-dimensional representation of Pd K-edge XANES, the LSAS method was able to isolate the key factors responsible for the observed spectral changes.
Collapse
Affiliation(s)
- Prahlad K Routh
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Yang Liu
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Nicholas Marcella
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Boris Kozinsky
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Bosch Research, Cambridge, Massachusetts 02139, United States
| | - Anatoly I Frenkel
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- Division of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
25
|
Soldatov M, Polozhentsev O, Zolotukhin P, Belanova A, Cotte M, Castillo-Michel H, Pradas del Real A, Kuchma E, Soldatov A. Micro-XANES analysis of superparamagnetic iron-oxide nanoparticles in biological tissues. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2020.109162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Timoshenko J, Roldan Cuenya B. In Situ/ Operando Electrocatalyst Characterization by X-ray Absorption Spectroscopy. Chem Rev 2021; 121:882-961. [PMID: 32986414 PMCID: PMC7844833 DOI: 10.1021/acs.chemrev.0c00396] [Citation(s) in RCA: 238] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Indexed: 12/18/2022]
Abstract
During the last decades, X-ray absorption spectroscopy (XAS) has become an indispensable method for probing the structure and composition of heterogeneous catalysts, revealing the nature of the active sites and establishing links between structural motifs in a catalyst, local electronic structure, and catalytic properties. Here we discuss the fundamental principles of the XAS method and describe the progress in the instrumentation and data analysis approaches undertaken for deciphering X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectra. Recent usages of XAS in the field of heterogeneous catalysis, with emphasis on examples concerning electrocatalysis, will be presented. The latter is a rapidly developing field with immense industrial applications but also unique challenges in terms of the experimental characterization restrictions and advanced modeling approaches required. This review will highlight the new insight that can be gained with XAS on complex real-world electrocatalysts including their working mechanisms and the dynamic processes taking place in the course of a chemical reaction. More specifically, we will discuss applications of in situ and operando XAS to probe the catalyst's interactions with the environment (support, electrolyte, ligands, adsorbates, reaction products, and intermediates) and its structural, chemical, and electronic transformations as it adapts to the reaction conditions.
Collapse
Affiliation(s)
- Janis Timoshenko
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, 14195 Berlin, Germany
| | - Beatriz Roldan Cuenya
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, 14195 Berlin, Germany
| |
Collapse
|
27
|
Liu Y, Fu F, McCue A, Jones W, Rao D, Feng J, He Y, Li D. Adsorbate-Induced Structural Evolution of Pd Catalyst for Selective Hydrogenation of Acetylene. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03897] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yanan Liu
- State Key Laboratory of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fengzhi Fu
- State Key Laboratory of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Alan McCue
- Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, U.K
| | - Wilm Jones
- Department of Chemistry, University College London, 20 Gower Street, London WC1E 6BT, U.K
| | - Deming Rao
- Institute of Science and Technology Strategy, Jiangxi Academy of Science, Jiangxi 330096, China
| | - Junting Feng
- State Key Laboratory of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yufei He
- State Key Laboratory of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dianqing Li
- State Key Laboratory of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
28
|
Bugaev AL, Zabilskiy M, Skorynina AA, Usoltsev OA, Soldatov AV, van Bokhoven JA. In situ formation of surface and bulk oxides in small palladium nanoparticles. Chem Commun (Camb) 2020; 56:13097-13100. [PMID: 32966404 DOI: 10.1039/d0cc05050d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Evolution of surface and bulk palladium oxides in supported palladium nanoparticles was followed in situ using X-ray absorption spectroscopy. The surface oxide was found to be easily reducible in hydrogen at room temperature, while removal of bulk oxide required heating in hydrogen above 100 °C. We also found that the co-presence of hydrogen and oxygen favours a stronger oxidation of palladium particles compared to pure oxygen.
Collapse
Affiliation(s)
- Aram L Bugaev
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, Rostov-on-Don, 344090, Russia.
| | | | | | | | | | | |
Collapse
|
29
|
Kunisu M, Yahiro J, Morimoto N, Nishina Y. Analyzing Dynamic Chemical States of Palladium Supported on Graphene Oxide by X-ray Absorption Fine Structure under Oxidative and Reductive Environments. CHEM LETT 2020. [DOI: 10.1246/cl.200529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Masahiro Kunisu
- Toray Research Center, Inc., Surface Science Laboratories, 3-7 Sonoyama 3-chome, Otsu, Shiga 520-8567, Japan
| | - Jumpei Yahiro
- Toray Research Center, Inc., Surface Science Laboratories, 3-7 Sonoyama 3-chome, Otsu, Shiga 520-8567, Japan
| | - Naoki Morimoto
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Division of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Yuta Nishina
- Research Core for Interdisciplinary Sciences, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
30
|
Guda A, Guda S, Martini A, Bugaev A, Soldatov M, Soldatov A, Lamberti C. Machine learning approaches to XANES spectra for quantitative 3D structural determination: The case of CO2 adsorption on CPO-27-Ni MOF. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2019.108430] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Skorynina A, Tereshchenko A, Usoltsev O, Bugaev A, Lomachenko K, Guda A, Groppo E, Pellegrini R, Lamberti C, Soldatov A. Time-dependent carbide phase formation in palladium nanoparticles. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2018.11.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
RETRACTED ARTICLE: Revisiting the Evolution of
IR Spectra of CO Adsorbed on Au Nanoparticles Supported on Non-reducible
Supports. Top Catal 2020. [DOI: 10.1007/s11244-020-01372-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
Garcia-Ortiz A, Vidal JD, Iborra S, Climent MJ, Cored J, Ruano D, Pérez-Dieste V, Concepción P, Corma A. Synthesis of a hybrid Pd0/Pd-carbide/carbon catalyst material with high selectivity for hydrogenation reactions. J Catal 2020. [DOI: 10.1016/j.jcat.2020.06.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Usoltsev OA, Pnevskaya AY, Kamyshova EG, Tereshchenko AA, Skorynina AA, Zhang W, Yao T, Bugaev AL, Soldatov AV. Dehydrogenation of Ethylene on Supported Palladium Nanoparticles: A Double View from Metal and Hydrocarbon Sides. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1643. [PMID: 32825750 PMCID: PMC7560039 DOI: 10.3390/nano10091643] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/10/2020] [Accepted: 08/18/2020] [Indexed: 02/03/2023]
Abstract
Adsorption of ethylene on palladium, a key step in various catalytic reactions, may result in a variety of surface-adsorbed species and formation of palladium carbides, especially under industrially relevant pressures and temperatures. Therefore, the application of both surface and bulk sensitive techniques under reaction conditions is important for a comprehensive understanding of ethylene interaction with Pd-catalyst. In this work, we apply in situ X-ray absorption spectroscopy, X-ray diffraction and infrared spectroscopy to follow the evolution of the bulk and surface structure of an industrial catalysts consisting of 2.6 nm supported palladium nanoparticles upon exposure to ethylene under atmospheric pressure at 50 °C. Experimental results were complemented by ab initio simulations of atomic structure, X-ray absorption spectra and vibrational spectra. The adsorbed ethylene was shown to dehydrogenate to C2H3, C2H2 and C2H species, and to finally decompose to palladium carbide. Thus, this study reveals the evolution pathway of ethylene on industrial Pd-catalyst under atmospheric pressure at moderate temperatures, and provides a conceptual framework for the experimental and theoretical investigation of palladium-based systems, in which both surface and bulk structures exhibit a dynamic nature under reaction conditions.
Collapse
Affiliation(s)
- Oleg A. Usoltsev
- The Smart Materials Research Institute, Southern Federal University, 178/24 Sladkova, 344090 Rostov-on-Don, Russia; (O.A.U.); (A.Y.P.); (E.G.K.); (A.A.T.); (A.A.S.); (A.V.S.)
| | - Anna Yu. Pnevskaya
- The Smart Materials Research Institute, Southern Federal University, 178/24 Sladkova, 344090 Rostov-on-Don, Russia; (O.A.U.); (A.Y.P.); (E.G.K.); (A.A.T.); (A.A.S.); (A.V.S.)
| | - Elizaveta G. Kamyshova
- The Smart Materials Research Institute, Southern Federal University, 178/24 Sladkova, 344090 Rostov-on-Don, Russia; (O.A.U.); (A.Y.P.); (E.G.K.); (A.A.T.); (A.A.S.); (A.V.S.)
| | - Andrei A. Tereshchenko
- The Smart Materials Research Institute, Southern Federal University, 178/24 Sladkova, 344090 Rostov-on-Don, Russia; (O.A.U.); (A.Y.P.); (E.G.K.); (A.A.T.); (A.A.S.); (A.V.S.)
| | - Alina A. Skorynina
- The Smart Materials Research Institute, Southern Federal University, 178/24 Sladkova, 344090 Rostov-on-Don, Russia; (O.A.U.); (A.Y.P.); (E.G.K.); (A.A.T.); (A.A.S.); (A.V.S.)
| | - Wei Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China; (W.Z.); (T.Y.)
| | - Tao Yao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China; (W.Z.); (T.Y.)
| | - Aram L. Bugaev
- The Smart Materials Research Institute, Southern Federal University, 178/24 Sladkova, 344090 Rostov-on-Don, Russia; (O.A.U.); (A.Y.P.); (E.G.K.); (A.A.T.); (A.A.S.); (A.V.S.)
| | - Alexander V. Soldatov
- The Smart Materials Research Institute, Southern Federal University, 178/24 Sladkova, 344090 Rostov-on-Don, Russia; (O.A.U.); (A.Y.P.); (E.G.K.); (A.A.T.); (A.A.S.); (A.V.S.)
| |
Collapse
|
35
|
Spectral Decomposition of X-ray Absorption Spectroscopy Datasets: Methods and Applications. CRYSTALS 2020. [DOI: 10.3390/cryst10080664] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
X-ray absorption spectroscopy (XAS) today represents a widespread and powerful technique, able to monitor complex systems under in situ and operando conditions, while external variables, such us sampling time, sample temperature or even beam position over the analysed sample, are varied. X-ray absorption spectroscopy is an element-selective but bulk-averaging technique. Each measured XAS spectrum can be seen as an average signal arising from all the absorber-containing species/configurations present in the sample under study. The acquired XAS data are thus represented by a spectroscopic mixture composed of superimposed spectral profiles associated to well-defined components, characterised by concentration values evolving in the course of the experiment. The decomposition of an experimental XAS dataset in a set of pure spectral and concentration values is a typical example of an inverse problem and it goes, usually, under the name of multivariate curve resolution (MCR). In the present work, we present an overview on the major techniques developed to realize the MCR decomposition together with a selection of related results, with an emphasis on applications in catalysis. Therein, we will highlight the great potential of these methods which are imposing as an essential tool for quantitative analysis of large XAS datasets as well as the directions for further development in synergy with the continuous instrumental progresses at synchrotron sources.
Collapse
|
36
|
Marchionni V, Nachtegaal M, Ferri D. Influence of CO on Dry CH 4 Oxidation on Pd/Al 2O 3 by Operando Spectroscopy: A Multitechnique Modulated Excitation Study. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05541] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Davide Ferri
- Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| |
Collapse
|
37
|
Singh N, Sanyal U, Ruehl G, Stoerzinger KA, Gutiérrez OY, Camaioni DM, Fulton JL, Lercher JA, Campbell CT. Aqueous phase catalytic and electrocatalytic hydrogenation of phenol and benzaldehyde over platinum group metals. J Catal 2020. [DOI: 10.1016/j.jcat.2019.12.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Usoltsev OA, Bugaev AL, Guda AA, Guda SA, Soldatov AV. Absorption of Hydrocarbons on Palladium Catalysts: From Simple Models Towards Machine Learning Analysis of X-ray Absorption Spectroscopy Data. Top Catal 2020. [DOI: 10.1007/s11244-020-01221-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
39
|
Cerrillo JL, Lopes CW, Rey F, Agostini G, Kiwi-Minsker L, Palomares AE. Nature and evolution of Pd catalysts supported on activated carbon fibers during the catalytic reduction of bromate in water. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00606h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pd/ACF are active catalysts for the bromate reduction and their activity depends on the Pd crystal size with a pseudo-first order kinetic respect to BrO3− and H2 partial pressure.
Collapse
Affiliation(s)
- Jose L. Cerrillo
- Instituto de Tecnología Química (CSIC – Universitat Politècnica de València)
- Spain
| | - Christian W. Lopes
- Instituto de Tecnología Química (CSIC – Universitat Politècnica de València)
- Spain
- CAPES
- Ministério da Educação do Brasil
- Brasilia
| | - Fernando Rey
- Instituto de Tecnología Química (CSIC – Universitat Politècnica de València)
- Spain
| | | | - Lioubov Kiwi-Minsker
- Ecole Polytechnique Fédéral de Lausanne (EPFL)
- Switzerland
- Tver State University
- Russian Federation
| | - Antonio E. Palomares
- Instituto de Tecnología Química (CSIC – Universitat Politècnica de València)
- Spain
| |
Collapse
|
40
|
Negahdar L, Parlett CMA, Isaacs MA, Beale AM, Wilson K, Lee AF. Shining light on the solid–liquid interface: in situ/ operando monitoring of surface catalysis. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00555j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Many industrially important chemical transformations occur at the interface between a solid catalyst and liquid reactants. In situ and operando spectroscopies offer unique insight into the reactivity of such catalytically active solid–liquid interfaces.
Collapse
Affiliation(s)
| | - Christopher M. A. Parlett
- Department of Chemical Engineering & Analytical Science
- The University of Manchester
- Manchester
- UK
- Diamond Light Source
| | | | | | - Karen Wilson
- Centre for Advanced Materials and Industrial Chemistry (CAMIC)
- School of Science
- RMIT University
- Melbourne
- Australia
| | - Adam F. Lee
- Centre for Advanced Materials and Industrial Chemistry (CAMIC)
- School of Science
- RMIT University
- Melbourne
- Australia
| |
Collapse
|
41
|
Gerber IC, Serp P. A Theory/Experience Description of Support Effects in Carbon-Supported Catalysts. Chem Rev 2019; 120:1250-1349. [DOI: 10.1021/acs.chemrev.9b00209] [Citation(s) in RCA: 274] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Iann C. Gerber
- LPCNO, Université de Toulouse, CNRS, INSA, UPS, 135 avenue de Rangueil, F-31077 Toulouse, France
| | - Philippe Serp
- LCC-CNRS, Université de Toulouse, UPR 8241 CNRS, INPT, 31400 Toulouse, France
| |
Collapse
|
42
|
The role of palladium carbides in the catalytic hydrogenation of ethylene over supported palladium nanoparticles. Catal Today 2019. [DOI: 10.1016/j.cattod.2019.02.068] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
Guda AA, Guda SA, Lomachenko KA, Soldatov MA, Pankin IA, Soldatov AV, Braglia L, Bugaev AL, Martini A, Signorile M, Groppo E, Piovano A, Borfecchia E, Lamberti C. Quantitative structural determination of active sites from in situ and operando XANES spectra: From standard ab initio simulations to chemometric and machine learning approaches. Catal Today 2019. [DOI: 10.1016/j.cattod.2018.10.071] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
44
|
Timoshenko J, Frenkel AI. “Inverting” X-ray Absorption Spectra of Catalysts by Machine Learning in Search for Activity Descriptors. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03599] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Janis Timoshenko
- Department of Interface Science, Fritz-Haber-Institute of the Max Planck Society, 14195 Berlin, Germany
| | - Anatoly I. Frenkel
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
45
|
Gentzen M, Doronkin DE, Sheppard TL, Zimina A, Li H, Jelic J, Studt F, Grunwaldt J, Sauer J, Behrens S. Supported Intermetallic PdZn Nanoparticles as Bifunctional Catalysts for the Direct Synthesis of Dimethyl Ether from CO‐Rich Synthesis Gas. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Manuel Gentzen
- Institute of Catalysis Research and Technology Karlsruhe Institute of Technology (KIT) Herrmann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Dmitry E. Doronkin
- Institute of Catalysis Research and Technology Karlsruhe Institute of Technology (KIT) Herrmann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
- Institute for Chemical Technology and Polymer Chemistry Karlsruhe Institute of Technology (KIT) Engesserstr. 20 76131 Karlsruhe Germany
| | - Thomas L. Sheppard
- Institute of Catalysis Research and Technology Karlsruhe Institute of Technology (KIT) Herrmann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
- Institute for Chemical Technology and Polymer Chemistry Karlsruhe Institute of Technology (KIT) Engesserstr. 20 76131 Karlsruhe Germany
| | - Anna Zimina
- Institute of Catalysis Research and Technology Karlsruhe Institute of Technology (KIT) Herrmann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
- Institute for Chemical Technology and Polymer Chemistry Karlsruhe Institute of Technology (KIT) Engesserstr. 20 76131 Karlsruhe Germany
| | - Haisheng Li
- Institute of Catalysis Research and Technology Karlsruhe Institute of Technology (KIT) Herrmann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
- School of Physics and Engineering Henan University of Science and Technology 471023 Luoyang, Henan Province P. R. China
| | - Jelena Jelic
- Institute of Catalysis Research and Technology Karlsruhe Institute of Technology (KIT) Herrmann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Felix Studt
- Institute of Catalysis Research and Technology Karlsruhe Institute of Technology (KIT) Herrmann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
- Institute for Chemical Technology and Polymer Chemistry Karlsruhe Institute of Technology (KIT) Engesserstr. 20 76131 Karlsruhe Germany
| | - Jan‐Dierk Grunwaldt
- Institute of Catalysis Research and Technology Karlsruhe Institute of Technology (KIT) Herrmann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
- Institute for Chemical Technology and Polymer Chemistry Karlsruhe Institute of Technology (KIT) Engesserstr. 20 76131 Karlsruhe Germany
| | - Jörg Sauer
- Institute of Catalysis Research and Technology Karlsruhe Institute of Technology (KIT) Herrmann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Silke Behrens
- Institute of Catalysis Research and Technology Karlsruhe Institute of Technology (KIT) Herrmann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
46
|
Gentzen M, Doronkin DE, Sheppard TL, Zimina A, Li H, Jelic J, Studt F, Grunwaldt JD, Sauer J, Behrens S. Supported Intermetallic PdZn Nanoparticles as Bifunctional Catalysts for the Direct Synthesis of Dimethyl Ether from CO-Rich Synthesis Gas. Angew Chem Int Ed Engl 2019; 58:15655-15659. [PMID: 31393656 PMCID: PMC6856832 DOI: 10.1002/anie.201906256] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/23/2019] [Indexed: 11/08/2022]
Abstract
The single-step syngas-to-dimethyl ether (STD) process entails economic and technical advantages over the current industrial two-step process. Pd/ZnO-based catalysts have recently emerged as interesting alternatives to currently used Cu/ZnO/Al2 O3 catalysts, but the nature of the active site(s), the reaction mechanism, and the role of Pd and ZnO in the solid catalyst are not well established. Now, Zn-stabilized Pd colloids with a size of 2 nm served as the key building blocks for the methanol active component in bifunctional Pd/ZnO-γ-Al2 O3 catalysts. The catalysts were characterized by combining high-pressure operando X-ray absorption spectroscopy and DFT calculations. The enhanced stability, longevity, and high dimethyl ether selectivity observed makes Pd/ZnO-γ-Al2 O3 an effective alternative system for the STD process compared to Cu/ZnO/γ-Al2 O3 .
Collapse
Affiliation(s)
- Manuel Gentzen
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology (KIT), Herrmann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Dmitry E Doronkin
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology (KIT), Herrmann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.,Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 20, 76131, Karlsruhe, Germany
| | - Thomas L Sheppard
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology (KIT), Herrmann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.,Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 20, 76131, Karlsruhe, Germany
| | - Anna Zimina
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology (KIT), Herrmann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.,Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 20, 76131, Karlsruhe, Germany
| | - Haisheng Li
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology (KIT), Herrmann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.,School of Physics and Engineering, Henan University of Science and Technology, 471023, Luoyang, Henan Province, P. R. China
| | - Jelena Jelic
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology (KIT), Herrmann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Felix Studt
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology (KIT), Herrmann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.,Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 20, 76131, Karlsruhe, Germany
| | - Jan-Dierk Grunwaldt
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology (KIT), Herrmann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.,Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 20, 76131, Karlsruhe, Germany
| | - Jörg Sauer
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology (KIT), Herrmann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Silke Behrens
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology (KIT), Herrmann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
47
|
Jones W, Wells PP, Gibson EK, Chutia A, Silverwood IP, Catlow CRA, Bowker M. Carbidisation of Pd Nanoparticles by Ethene Decomposition with Methane Production. ChemCatChem 2019. [DOI: 10.1002/cctc.201900795] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wilm Jones
- UK Catalysis HubResearch Complex at Harwell Oxfordshire OX11 0FA United Kingdom
- Cardiff Catalysis Institute School of ChemistryCardiff University Cardiff CF10 3AT United Kingdom
| | - Peter. P. Wells
- UK Catalysis HubResearch Complex at Harwell Oxfordshire OX11 0FA United Kingdom
- Diamond Light Source LtdHarwell Science & Innovation Campus Didcot, Oxfordshire OX11 0DE United Kingdom
- School of ChemistryUniversity of Southampton Southampton SO17 1BJ United Kingdom
| | - Emma K. Gibson
- UK Catalysis HubResearch Complex at Harwell Oxfordshire OX11 0FA United Kingdom
- School of Chemistry Joseph Black BuildingUniversity of Glasgow Glasgow G12 8QQ United Kingdom
| | - Arunabhiram Chutia
- UK Catalysis HubResearch Complex at Harwell Oxfordshire OX11 0FA United Kingdom
- School of Chemistry Brayford PoolUniversity of Lincoln Lincoln LN6 7TS United Kingdom
| | - Ian P. Silverwood
- ISIS Neutron and Muon Facility Science and Technology Facilities Council Rutherford Appleton LaboratoryHarwell Science and Innovation Campus Oxon OX11 0QX United Kingdom
| | - C. Richard A. Catlow
- UK Catalysis HubResearch Complex at Harwell Oxfordshire OX11 0FA United Kingdom
- Cardiff Catalysis Institute School of ChemistryCardiff University Cardiff CF10 3AT United Kingdom
| | - Michael Bowker
- UK Catalysis HubResearch Complex at Harwell Oxfordshire OX11 0FA United Kingdom
- Cardiff Catalysis Institute School of ChemistryCardiff University Cardiff CF10 3AT United Kingdom
| |
Collapse
|
48
|
Timoshenko J, Duan Z, Henkelman G, Crooks RM, Frenkel AI. Solving the Structure and Dynamics of Metal Nanoparticles by Combining X-Ray Absorption Fine Structure Spectroscopy and Atomistic Structure Simulations. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:501-522. [PMID: 30699037 DOI: 10.1146/annurev-anchem-061318-114929] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Extended X-ray absorption fine structure (EXAFS) spectroscopy is a premiere method for analysis of the structure and structural transformation of nanoparticles. Extraction of analytical information about the three-dimensional structure and dynamics of metal-metal bonds from EXAFS spectra requires special care due to their markedly non-bulk-like character. In recent decades, significant progress has been made in the first-principles modeling of structure and properties of nanoparticles. In this review, we summarize new approaches for EXAFS data analysis that incorporate particle structure modeling into the process of structural refinement.
Collapse
Affiliation(s)
- J Timoshenko
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, USA;
| | - Z Duan
- Department of Chemistry and Texas Materials Institute, University of Texas at Austin, Austin, Texas 78712, USA
- Institute for Computational and Engineering Sciences, University of Texas at Austin, Austin, Texas 78712, USA
| | - G Henkelman
- Department of Chemistry and Texas Materials Institute, University of Texas at Austin, Austin, Texas 78712, USA
- Institute for Computational and Engineering Sciences, University of Texas at Austin, Austin, Texas 78712, USA
| | - R M Crooks
- Department of Chemistry and Texas Materials Institute, University of Texas at Austin, Austin, Texas 78712, USA
| | - A I Frenkel
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, USA;
- Division of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, USA
| |
Collapse
|
49
|
Bugaev AL, Guda AA, Pankin IA, Groppo E, Pellegrini R, Longo A, Soldatov AV, Lamberti C. Operando X-ray absorption spectra and mass spectrometry data during hydrogenation of ethylene over palladium nanoparticles. Data Brief 2019; 24:103954. [PMID: 31193062 PMCID: PMC6515128 DOI: 10.1016/j.dib.2019.103954] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/02/2019] [Accepted: 04/18/2019] [Indexed: 11/26/2022] Open
Abstract
We report the series of Pd K-edge X-ray absorption spectra collected during hydrogenation of ethylene with variable ethylene/hydrogen ratio over carbon supported palladium nanoparticles. The data presented in this article includes normalized X-ray absorption spectra, k 2-weighted oscillatory χ(k) functions extracted from the extended X-ray absorption fine structure (EXAFS) and k 2-weighted Fourier-transformed EXAFS data, χ(R). Each spectrum is reported together with the hydrogen, ethylene and helium flow rates, adjusted during its collection. In addition, time evolution of the ratio of m/Z signals of 30 and 28 registered by online mass spectrometer is presented. The data analysis is reported in Bugaev et al., Catal. Today, 2019 [1].
Collapse
Affiliation(s)
- Aram L. Bugaev
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, 344090 Rostov-on-Don, Russia
| | - Alexander A. Guda
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, 344090 Rostov-on-Don, Russia
| | - Ilia A. Pankin
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, 344090 Rostov-on-Don, Russia
- Department of Chemistry, INSTM and NIS Centre, University of Turin, Via Quarello 15, 10125 Turin, Italy
| | - Elena Groppo
- Department of Chemistry, INSTM and NIS Centre, University of Turin, Via Quarello 15, 10125 Turin, Italy
| | - Riccardo Pellegrini
- Chimet SpA - Catalyst Division, Via di Pescaiola 74, Viciomaggio Arezzo, 52041 Italy
| | - Alessandro Longo
- Netherlands Organization for Scientific Research at ESRF, BP 220, F-38043 Grenoble Cedex 9, France
- Istituto per Lo Studio Dei Materiali Nanostrutturati (ISMN)-CNR, UOS Via Ugo La Malfa, 153, 90146 Palermo, Italy
| | - Alexander V. Soldatov
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, 344090 Rostov-on-Don, Russia
| | - Carlo Lamberti
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, 344090 Rostov-on-Don, Russia
- Department of Physics and CrisDi Interdepartmental Centre, University of Turin, Via P. Giuria 1, 10125 Turin, Italy
| |
Collapse
|
50
|
Iqbal M, Kaneti YV, Kim J, Yuliarto B, Kang YM, Bando Y, Sugahara Y, Yamauchi Y. Chemical Design of Palladium-Based Nanoarchitectures for Catalytic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804378. [PMID: 30633438 DOI: 10.1002/smll.201804378] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 12/10/2018] [Indexed: 06/09/2023]
Abstract
Palladium (Pd) plays an important role in numerous catalytic reactions, such as methanol and ethanol oxidation, oxygen reduction, hydrogenation, coupling reactions, and carbon monoxide oxidation. Creating Pd-based nanoarchitectures with increased active surface sites, higher density of low-coordinated atoms, and maximized surface coverage for the reactants is important. To address the limitations of pure Pd, various Pd-based nanoarchitectures, including alloys, intermetallics, and supported Pd nanomaterials, have been fabricated by combining Pd with other elements with similar or higher catalytic activity for many catalytic reactions. Herein, recent advances in the preparation of Pd-based nanoarchitectures through solution-phase chemical reduction and electrochemical deposition methods are summarized. Finally, the trend and future outlook in the development of Pd nanocatalysts toward practical catalytic applications are discussed.
Collapse
Affiliation(s)
- Muhammad Iqbal
- International Research Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Yusuf Valentino Kaneti
- International Research Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Jeonghun Kim
- Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Brian Yuliarto
- Department of Engineering Physics and Research Center for Nanoscience and Nanotechnology, Institute of Technology Bandung, Ganesha 10, Bandung, 40132, Indonesia
| | - Yong-Mook Kang
- Department of Energy and Materials Engineering, Dongguk University, Seoul, 04620, South Korea
| | - Yoshio Bando
- International Research Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Institute of Molecular Plus, Tianjin University, Nankai District, Tianjin, 300072, P. R. China
- Australian Institute of Innovative Materials, University of Wollongong, Squires Way, North Wollongong, NSW, 2500, Australia
| | - Yoshiyuki Sugahara
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo, 169-8555, Japan
- Kagami Memorial Laboratory for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo, 169-0051, Japan
| | - Yusuke Yamauchi
- Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheunggu, Yongin-si, Gyeonggi-do, 446-701, South Korea
| |
Collapse
|