1
|
Yu Y, Lin J, Qin A, Wang H, Wang J, Wang W, Wu G, Zhang Q, Qian H, Ma S. Relay Catalysis for Selective Aerobic Oxidative Esterification of Primary Alcohols with Methanol. Org Lett 2024. [PMID: 38619221 DOI: 10.1021/acs.orglett.4c01059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Esters are bulk and fine chemicals and ubiquitous in polymers, bioactive compounds, and natural products. Their traditional synthetic approach is the esterification of carboxylic acids or their activated derivatives with alcohols. Herein, a bimetallic relay catalytic protocol was developed for the aerobic esterification of one alcohol in the presence of a slowly oxidizing alcohol, which has been identified as methanol. A concise synthesis of phlomic acid was executed to demonstrate the practicality and potential of this reaction.
Collapse
Affiliation(s)
- Yibo Yu
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| | - Jie Lin
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| | - Anni Qin
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| | - Huanan Wang
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| | - Jie Wang
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| | - Weiyi Wang
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| | - Guolin Wu
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| | - Qian Zhang
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| | - Hui Qian
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| | - Shengming Ma
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| |
Collapse
|
2
|
Lei L, Cao Q, Ma J, Hou F. One-Step Hydrothermal/Solvothermal Preparation of Pt/TiO 2: An Efficient Catalyst for Biobutanol Oxidation at Room Temperature. Molecules 2024; 29:1450. [PMID: 38611730 PMCID: PMC11013154 DOI: 10.3390/molecules29071450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
The selective oxidation of biobutanol to prepare butyric acid is an important conversion process, but the preparation of low-temperature and efficient catalysts for butanol oxidation is currently a bottleneck problem. In this work, we prepared Pt-TiO2 catalysts with different Pt particle sizes using a simple one-step hydrothermal/solvothermal method. Transmission electron microscopy and X-ray diffraction results showed that the average size of the Pt particles ranged from 1.1 nm to 8.7 nm. Among them, Pt-TiO2 with an average particle size of 3.6 nm exhibited the best catalytic performance for biobutanol. It was capable of almost completely converting butanol, even at room temperature (30 °C), with a 98.9% biobutanol conversion, 98.4% butyric acid selectivity, and a turnover frequency (TOF) of 36 h-1. Increasing the reaction temperature to 80 and 90 °C, the corresponding TOFs increased rapidly to 355 and 619 h-1. The relationship between the electronic structure of Pt and its oxidative performance suggests that the synergistic effect of the dual sites, Pt0 and Pt2+, could be the primary factor contributing to its elevated reactivity.
Collapse
Affiliation(s)
- Lijun Lei
- School of Energy and Power Engineering, North University of China, Taiyuan 030051, China; (J.M.); (F.H.)
| | - Qianyue Cao
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China;
| | - Jiachen Ma
- School of Energy and Power Engineering, North University of China, Taiyuan 030051, China; (J.M.); (F.H.)
| | - Fengxiao Hou
- School of Energy and Power Engineering, North University of China, Taiyuan 030051, China; (J.M.); (F.H.)
| |
Collapse
|
3
|
Sharma AK, Mehara P, Das P. Recent Advances in Supported Bimetallic Pd–Au Catalysts: Development and Applications in Organic Synthesis with Focused Catalytic Action Study. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ajay Kumar Sharma
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pushkar Mehara
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pralay Das
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
4
|
Zare M, Moradi L. Modification of magnetic mesoporous N-doped silica nanospheres by CuO NPs: a highly efficient catalyst for the multicomponent synthesis of some propellane indeno indole derivatives. RSC Adv 2022; 12:34822-34830. [DOI: 10.1039/d2ra06221f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Herein, magnetic mesoporous N-doped silica nanospheres decorated by CuO nanoparticles (M-MNS/CuO) were prepared and used for the green and efficient synthesis of some [3.3.3] propellane indeno[1,2-b] indole derivatives.
Collapse
Affiliation(s)
- Mina Zare
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, P.O. Box 8731753153, Kashan, Iran
| | - Leila Moradi
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, P.O. Box 8731753153, Kashan, Iran
| |
Collapse
|
5
|
Ghorbani S, Parnian R, Soleimani E. Pd nanoparticles supported on pyrazolone-functionalized hollow mesoporous silica as an excellent heterogeneous nanocatalyst for the selective oxidation of benzyl alcohol. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.122025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
6
|
Masteri-Farahani M, Shahsavarifar S. Chemical functionalization of chitosan biopolymer and chitosan-magnetite nanocomposite with sulfonic acid for acid-catalyzed reactions. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.04.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
7
|
Mekrattanachai P, Zhu L, Setthaya N, Chindawong C, Song WG. The Highly Effective Cobalt Based Metal–Organic Frameworks Catalyst for One Pot Oxidative Esterification Under Mild Conditions. Catal Letters 2021. [DOI: 10.1007/s10562-021-03754-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Catalytic Oxidation of Benzyl Alcohol to Benzaldehyde on Au8 and Au6Pd2 Clusters: A DFT Study on the Reaction Mechanism. Catalysts 2021. [DOI: 10.3390/catal11060720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Density functional theory calculations were performed to investigate the reaction mechanism of the aerobic oxidation of benzyl alcohol to benzaldehyde catalyzed by Au and Au–Pd clusters. Two consecutive reaction mechanisms were examined with Au8 and Au6Pd2 clusters: (1) the oxidation of benzyl alcohol with dissociated O atoms on metal clusters generating benzaldehyde and H2O; and (2) oxidation with adsorbed oxygen molecules generating benzaldehyde and H2O2. The calculations show that the aerobic oxidation of benzyl alcohol energetically prefers to proceed in the former mechanism, which agrees with the experimental observation. We demonstrate that the role of Au centers around the activation of molecular oxygen to peroxide-like species, which are capable of the H–abstraction of benzyl alcohol. The roles of Pd in the Au6Pd2 cluster are: (1) increasing the electron distribution to neighboring Au atoms, which facilitates the activation of O2; and (2) stabilizing the adsorption complex and transition states by the interaction between positively charged Pd atoms and the π-bond of benzyl alcohol, both of which are the origin of the lower energy barriers than those of Au8.
Collapse
|
9
|
Qi M, Wu X, Wang L, Song Y, Diao Y. The effect of the bimetallic Pd-Pb structures on direct oxidative esterification of methacrolein with methanol. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Metzger KE, Moyer MM, Trewyn BG. Tandem Catalytic Systems Integrating Biocatalysts and Inorganic Catalysts Using Functionalized Porous Materials. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04488] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Kara E. Metzger
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Megan M. Moyer
- Department of Chemistry, The Citadel, Charleston, South Carolina 29409, United States
| | - Brian G. Trewyn
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
11
|
Shi LY, Li YX, Xue DM, Shao MQ, Gu MX, Liu XQ, Sun LB. Facile Fabrication of Small-Sized Palladium Nanoparticles in Nanoconfined Spaces for Low-Temperature CO Oxidation. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Li-Ying Shi
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
- School of Pharmacy, Nanjing Medical University, Nanjing 210029, China
| | - Yu-Xia Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Ding-Ming Xue
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Ming-Qi Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Meng-Xuan Gu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Xiao-Qin Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Lin-Bing Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| |
Collapse
|
12
|
Dokhlikova NV, Gatin AK, Sarvadii SY, Rudenko EI, Grishin MV, Shub BR. The Adsorption of Hydrogen on AunNim and AunCum Clusters (n + m = 13): Quantum-Chemical Simulation. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2020. [DOI: 10.1134/s1990793120050036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Nasrollahzadeh M, Shafiei N, Nezafat Z, Soheili Bidgoli NS, Soleimani F. Recent progresses in the application of cellulose, starch, alginate, gum, pectin, chitin and chitosan based (nano)catalysts in sustainable and selective oxidation reactions: A review. Carbohydr Polym 2020; 241:116353. [DOI: 10.1016/j.carbpol.2020.116353] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/07/2020] [Accepted: 04/19/2020] [Indexed: 10/24/2022]
|
14
|
Neamani S, Moradi L, Sun M. Core–shell magnetic mesoporous N-doped silica nanoparticles: solid base catalysts for the preparation of some arylpyrimido[4,5-b]quinoline diones under green conditions. RSC Adv 2020; 10:35397-35406. [PMID: 36277465 PMCID: PMC9476997 DOI: 10.1039/d0ra06546c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/31/2020] [Indexed: 11/23/2022] Open
Abstract
Nowadays, the application of solid base catalysts as a perfect replacement for homogenous basic catalysts has attracted the attention of researchers. In this study, core–shell magnetic mesoporous N-doped silica nanoparticles N(x wt%)-MSN, as a heterogeneous base catalyst, were synthesized. The N(x wt%)-MSN composite was fabricated by adding different amounts of diethanolamine as a source of nitrogen, besides using tetraethylorthosilicate as a precursor of silica. The as-prepared catalyst was employed efficiently for the synthesis of some arylpyrimido[4,5-b]quinoline-dione derivatives under green conditions. The highly efficient catalyst N(1.3 wt%)-MSN was characterized via XRD, FESEM, HRTEM, BET and XPS techniques, and the results of these analyses proved that the nitrogen was doped into the silica structure. Also, the results demonstrated the core–shell structure of the as-synthesized composite. Preparation of core–shell magnetic mesoporous N-doped silica nanoparticles as a new solid base catalyst was studied. obtained catalyst was used for the preparation of some arylpyrimido[4,5-b]quinoline diones under green conditions.![]()
Collapse
Affiliation(s)
- Shekofeh Neamani
- Department of Organic Chemistry
- Faculty of Chemistry
- University of Kashan
- Kashan
- I. R. Iran
| | - Leila Moradi
- Department of Organic Chemistry
- Faculty of Chemistry
- University of Kashan
- Kashan
- I. R. Iran
| | - Mingxuan Sun
- School of Materials Engineering
- Shanghai University of Engineering Science
- China
| |
Collapse
|
15
|
Nasrollahzadeh M, Sajjadi M, Shokouhimehr M, Varma RS. Recent developments in palladium (nano)catalysts supported on polymers for selective and sustainable oxidation processes. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.06.010] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
16
|
Sable V, Shah J, Sharma A, Kapdi AR. Pd-Colloids-Catalyzed/Ag 2 O-Oxidized General and Selective Esterification of Benzylic Alcohols. Chem Asian J 2019; 14:2639-2647. [PMID: 31107588 DOI: 10.1002/asia.201900566] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/20/2019] [Indexed: 12/29/2022]
Abstract
Palladium colloids obtained from the degradation of Hermann-Beller palladacycle proved to be an efficient catalytic system in combination with silver oxide as a selective oxidant for the oxidative esterification of differently substituted benzyl alcohols in MeOH as solvent. Excellent reactivity exhibited by the catalytic system also allowed the alcoholic coupling partner to be changed from MeOH to a wide range of alcohols having diverse functionalities. The mildness of the developed protocol also made it possible to employ propargyl alcohol as the coupling partner without any observation of any interference of the terminal alkyne. Selective oxidative coupling of a primary alcoholic functional group over secondary in the case of glycols and glycerols was also made possible using the developed catalyst system. To test the relevancy of Pd/Ag combined catalysis mixed Pd/Ag colloids were synthesized, characterized by TEM, XRD and XPS and applied to oxidative-esterification successfully.
Collapse
Affiliation(s)
- Vaibhav Sable
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh road, Matunga, Mumbai-, 400019, India
| | - Jagrut Shah
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh road, Matunga, Mumbai-, 400019, India
| | - Anuja Sharma
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh road, Matunga, Mumbai-, 400019, India
| | - Anant R Kapdi
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh road, Matunga, Mumbai-, 400019, India
| |
Collapse
|
17
|
da S. Melo IEM, de Sousa SAA, dos S. Pereira LN, Oliveira JM, Castro KPR, Costa JCS, de Moura EM, de Moura CVR, Garcia MAS. Au−Pd Selectivity‐switchable Alcohol‐oxidation Catalyst: Controlling the Duality of the Mechanism using a Multivariate Approach. ChemCatChem 2019. [DOI: 10.1002/cctc.201900512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Itaciara E. M. da S. Melo
- Chemistry DepartmentFederal University of Piauí Campus Universitário Ministro Petrônio Portella 64049-550 Teresina PI Brazil
| | - Samuel A. A. de Sousa
- Chemistry DepartmentFederal University of Piauí Campus Universitário Ministro Petrônio Portella 64049-550 Teresina PI Brazil
| | - Laíse N. dos S. Pereira
- Chemistry DepartmentFederal University of Piauí Campus Universitário Ministro Petrônio Portella 64049-550 Teresina PI Brazil
| | - Jefferson M. Oliveira
- Chemistry DepartmentFederal University of Piauí Campus Universitário Ministro Petrônio Portella 64049-550 Teresina PI Brazil
| | - Karla P. R. Castro
- Chemistry DepartmentFederal University of Piauí Campus Universitário Ministro Petrônio Portella 64049-550 Teresina PI Brazil
| | - Jean C. S. Costa
- Chemistry DepartmentFederal University of Piauí Campus Universitário Ministro Petrônio Portella 64049-550 Teresina PI Brazil
| | - Edmilson M. de Moura
- Chemistry DepartmentFederal University of Piauí Campus Universitário Ministro Petrônio Portella 64049-550 Teresina PI Brazil
| | - Carla V. R. de Moura
- Chemistry DepartmentFederal University of Piauí Campus Universitário Ministro Petrônio Portella 64049-550 Teresina PI Brazil
| | - Marco A. S. Garcia
- Chemistry DepartmentFederal University of Piauí Campus Universitário Ministro Petrônio Portella 64049-550 Teresina PI Brazil
| |
Collapse
|
18
|
Zhang C, Wang Y. Chloride‐Induced Highly Active Au Catalyst for Methyl Esterification of Alcohols. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201800374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chengming Zhang
- Engineering Research Center of Ministry of Education for Fine Chemicals, School of Chemistry and Chemical Engineering, Shanxi University Taiyuan Shanxi 030006 China
| | - Yongzhao Wang
- Engineering Research Center of Ministry of Education for Fine Chemicals, School of Chemistry and Chemical Engineering, Shanxi University Taiyuan Shanxi 030006 China
| |
Collapse
|