1
|
Lindley M, Stishenko P, Crawley JWM, Tinkamanyire F, Smith M, Paterson J, Peacock M, Xu Z, Hardacre C, Walton AS, Logsdail AJ, Haigh SJ. Tuning the Size of TiO 2-Supported Co Nanoparticle Fischer-Tropsch Catalysts Using Mn Additions. ACS Catal 2024; 14:10648-10657. [PMID: 39050900 PMCID: PMC11264206 DOI: 10.1021/acscatal.4c02721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 07/27/2024]
Abstract
Modifying traditional Co/TiO2-based Fischer-Tropsch (FT) catalysts with Mn promoters induces a selectivity shift from long-chain paraffins toward commercially desirable alcohols and olefins. In this work, we use in situ gas cell scanning transmission electron microscopy (STEM) with energy-dispersive X-ray spectroscopy (EDS) elemental mapping, and near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) to demonstrate how the elemental dispersion and chemical structure of the as-calcined materials evolve during the H2 activation heat treatment required for industrial CoMn/TiO2 FT catalysts. We find that Mn additions reduce both the mean Co particle diameter and the size distribution but that the Mn remains dispersed on the support after the activation step. Density functional theory calculations show that the slower surface diffusion of Mn is likely due to the lower number of energetically accessible sites for the Mn on the titania support and that favorable Co-Mn interactions likely cause greater dispersion and slower sintering of Co in the Mn-promoted catalyst. These mechanistic insights into how the introduction of Mn tunes the Co nanoparticle size can be applied to inform the design of future-supported nanoparticle catalysts for FT and other heterogeneous catalytic processes.
Collapse
Affiliation(s)
- Matthew Lindley
- Department
of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Pavel Stishenko
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Park Place, Cardiff CF10
3AT, U.K.
| | - James W. M. Crawley
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Park Place, Cardiff CF10
3AT, U.K.
| | - Fred Tinkamanyire
- Department
of Chemistry and Photon Science Institute, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Matthew Smith
- Department
of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - James Paterson
- bp,
Applied Sciences, Innovation & Engineering, Saltend, Hull HU12 8DS, U.K.
| | - Mark Peacock
- bp,
Applied Sciences, Innovation & Engineering, Saltend, Hull HU12 8DS, U.K.
| | - Zhuoran Xu
- bp,
Applied Sciences, Innovation & Engineering, Chicago, Illinois 60606, United States
| | - Christopher Hardacre
- Department
of Chemical Engineering and Analytical Science, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Alex S. Walton
- Department
of Chemistry and Photon Science Institute, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Andrew J. Logsdail
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Park Place, Cardiff CF10
3AT, U.K.
| | - Sarah J. Haigh
- Department
of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
2
|
Lin H, Zhang W, Shen H, Yu H, An Y, Lin T, Zhong L. Control of metal-support interaction for tunable CO hydrogenation performance over Ru/TiO 2 nanocatalysts. NANOSCALE 2024; 16:6151-6162. [PMID: 38445306 DOI: 10.1039/d3nr06208b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The catalytic behavior of CO hydrogenation can be modulated by metal-support interactions, while the role of the support remains elusive. Herein, we demonstrate that the presence of strong metal-support interactions (SMSI) depends strongly on the crystal phase of TiO2 (rutile or anatase) and the treatment conditions for the TiO2 support, which could critically control the activity and selectivity of Ru-based nanocatalysts for CO hydrogenation. High CO conversion and olefin selectivity were observed for Ru/rutile-TiO2 (Ru/r-TiO2), while catalysts supported by anatase (a-TiO2) showed almost no activity. Characterization confirmed that the SMSI effect could be neglected for Ru/r-TiO2, while it is dominant on Ru/a-TiO2 after reduction at 300 °C, resulting in the coverage of Ru nanoparticles by TiOx overlayers. Such SMSI could be suppressed by H2 treatment of the a-TiO2 support and the catalytic activity of the as-obtained Ru/a-TiO2(H2) can be greatly elevated from almost inactive to >50% CO conversion with >60% olefin selectivity. Further results indicated that the surface reducibility of the TiO2 support determines the SMSI state and catalytic performance of Ru/TiO2 in the CO hydrogenation reaction. This work offers an effective strategy to design efficient catalysts for the FTO reaction by regulating the crystal phase of the support.
Collapse
Affiliation(s)
- Heyun Lin
- Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Wenzhe Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Huachen Shen
- Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hailing Yu
- Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yunlei An
- Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China.
| | - Tiejun Lin
- Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Liangshu Zhong
- Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
3
|
Kim T, Nguyen-Phu H, Kwon T, Kang KH, Ro I. Investigating the impact of TiO 2 crystalline phases on catalytic properties of Ru/TiO 2 for hydrogenolysis of polyethylene plastic waste. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121876. [PMID: 37263565 DOI: 10.1016/j.envpol.2023.121876] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023]
Abstract
A series of TiO2-supported Ru catalysts with different TiO2 crystalline phases was synthesized and employed for the hydrogenolysis of polyethylene (PE). CO chemisorption, high-angle annular dark-field-scanning transmission electron microscopy, temperature-programmed reduction, and CO-Fourier transform infrared spectroscopy suggested that the degree of strong metal-support interactions (SMSIs) varied depending on the type of the TiO2 phase and the reduction temperature, eventually influencing the catalysis of PE hydrogenolysis. Among the synthesized catalysts, Ru/TiO2 with the rutile phase (Ru/TiO2-R) exhibited the highest catalytic activity after high-temperature reduction at 500 °C, indicating that a certain degree of SMSI is necessary for ensuring high activity in PE hydrogenolysis. Ru/TiO2-R could be successfully employed for the hydrogenolysis of post-consumer plastic wastes such as LDPE bottles to produce valuable chemicals (liquid fuel and wax) in high yields of 74.7%. This work demonstrates the possibility of harnessing the SMSIs in the design and synthesis of active catalysts for PE hydrogenolysis.
Collapse
Affiliation(s)
- Taehyup Kim
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Huy Nguyen-Phu
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Taeeun Kwon
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Ki Hyuk Kang
- Chemical & Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea
| | - Insoo Ro
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea.
| |
Collapse
|
4
|
Filip M, Anghel EM, Rednic V, Papa F, Somacescu S, Munteanu C, Aldea N, Zhang J, Parvulescu V. Variation in Metal-Support Interaction with TiO 2 Loading and Synthesis Conditions for Pt-Ti/SBA-15 Active Catalysts in Methane Combustion. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101647. [PMID: 37242063 DOI: 10.3390/nano13101647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/03/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023]
Abstract
The control of catalytic performance using synthesis conditions is one of the main goals of catalytic research. Two series of Pt-Ti/SBA-15 catalysts with different TiO2 percentages (n = 1, 5, 10, 30 wt.%) were obtained from tetrabutylorthotitanate (TBOT) and peroxotitanate (PT), as titania precursors and Pt impregnation. The obtained catalysts were characterized using X-ray diffraction, scanning electron microscopy (SEM) and transmission electron microscopy (TEM), N2 sorption, Raman, X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), hydrogen temperature-programmed reduction (H2-TPR) and H2-chemisorption measurements. Raman spectroscopy showed framework titanium species in low TiO2 loading samples. The anatase phase was evidenced for samples with higher titania loading, obtained from TBOT, and a mixture of rutile and anatase for those synthesized by PT. The rutile phase prevails in rich TiO2 catalysts obtained from PT. Variable concentrations of Pt0 as a result of the stronger interaction of PtO with anatase and the weaker interaction with rutile were depicted using XPS. TiO2 loading and precursors influenced the concentration of Pt species, while the effect on Pt nanoparticles' size and uniform distribution on support was insignificant. The Pt/PtO ratio and their concentration on the surface were the result of strong metal-support interaction, and this influenced catalytic performance in the complete oxidation of methane at a low temperature. The highest conversion was obtained for sample prepared from PT with 30% TiO2.
Collapse
Affiliation(s)
- Mihaela Filip
- Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest, Romania
| | - Elena Maria Anghel
- Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest, Romania
| | - Vasile Rednic
- National Institute for R&D of Isotopic and Molecular Technologies, Donat St. 67-103, 400293 Cluj-Napoca, Romania
| | - Florica Papa
- Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest, Romania
| | - Simona Somacescu
- Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest, Romania
| | - Cornel Munteanu
- Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest, Romania
| | - Nicolae Aldea
- National Institute for R&D of Isotopic and Molecular Technologies, Donat St. 67-103, 400293 Cluj-Napoca, Romania
| | - Jing Zhang
- Beijing Synchrotron Radiation Facilities of Beijing Electron Positron Collider National Laboratory,19B Yuquan Road, Beijing 100049, China
| | - Viorica Parvulescu
- Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest, Romania
| |
Collapse
|
5
|
A Review of CeO2 Supported Catalysts for CO2 Reduction to CO through the Reverse Water Gas Shift Reaction. Catalysts 2022. [DOI: 10.3390/catal12101101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The catalytic conversion of CO2 to CO by the reverse water gas shift (RWGS) reaction followed by well-established synthesis gas conversion technologies could be a practical technique to convert CO2 to valuable chemicals and fuels in industrial settings. For catalyst developers, prevention of side reactions like methanation, low-temperature activity, and selectivity enhancements for the RWGS reaction are crucial concerns. Cerium oxide (ceria, CeO2) has received considerable attention in recent years due to its exceptional physical and chemical properties. This study reviews the use of ceria-supported active metal catalysts in RWGS reaction along with discussing some basic and fundamental features of ceria. The RWGS reaction mechanism, reaction kinetics on supported catalysts, as well as the importance of oxygen vacancies are also explored. Besides, recent advances in CeO2 supported metal catalyst design strategies for increasing CO2 conversion activity and selectivity towards CO are systematically identified, summarized, and assessed to understand the impacts of physicochemical parameters on catalytic performance such as morphologies, nanosize effects, compositions, promotional abilities, metal-support interactions (MSI) and the role of selected synthesis procedures for forming distinct structural morphologies. This brief review may help with future RWGS catalyst design and optimization.
Collapse
|
6
|
Gao G, Zhao Z, Wang J, Xi Y, Sun P, Li F. Boosting chiral carboxylic acid hydrogenation by tuning metal-MO -support interaction in Pt-ReO /TiO2 catalysts. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)64021-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Tan T, Liu S, Chen K, Imhanria S, Tao P, Wang W. A multi-component system for urea electrooxidation: Ir3Sn nanoparticles loading on Iron- and Nitrogen- codoped composite carbon support. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Boosting CO2 hydrogenation via size-dependent metal–support interactions in cobalt/ceria-based catalysts. Nat Catal 2020. [DOI: 10.1038/s41929-020-0459-4] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Horáček J. Fischer–Tropsch synthesis, the effect of promoters, catalyst support, and reaction conditions selection. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02590-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Bertella F, Lopes CW, Foucher AC, Agostini G, Concepción P, Stach EA, Martínez A. Insights into the Promotion with Ru of Co/TiO2 Fischer–Tropsch Catalysts: An In Situ Spectroscopic Study. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05359] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Francine Bertella
- Instituto de Tecnología Química, Universitat Politècnica de València−Consejo Superior de Investigaciones Científicas (UPV−CSIC), Avda. de los Naranjos s/n, 46022 Valencia, Spain
- Institute of Chemistry, Universidade Federal do Rio Grande do Sul—UFRGS, Av. Bento Gonçalves, 9500, P.O. Box 15003, 91501-970 Porto Alegre, RS, Brazil
| | - Christian W. Lopes
- Instituto de Tecnología Química, Universitat Politècnica de València−Consejo Superior de Investigaciones Científicas (UPV−CSIC), Avda. de los Naranjos s/n, 46022 Valencia, Spain
- Institute of Chemistry, Universidade Federal do Rio Grande do Sul—UFRGS, Av. Bento Gonçalves, 9500, P.O. Box 15003, 91501-970 Porto Alegre, RS, Brazil
| | - Alexandre C. Foucher
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Giovanni Agostini
- CELLS—ALBA Synchrotron Radiation Facility, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - Patricia Concepción
- Instituto de Tecnología Química, Universitat Politècnica de València−Consejo Superior de Investigaciones Científicas (UPV−CSIC), Avda. de los Naranjos s/n, 46022 Valencia, Spain
| | - Eric A. Stach
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Agustín Martínez
- Instituto de Tecnología Química, Universitat Politècnica de València−Consejo Superior de Investigaciones Científicas (UPV−CSIC), Avda. de los Naranjos s/n, 46022 Valencia, Spain
| |
Collapse
|
11
|
van Deelen TW, Hernández Mejía C, de Jong KP. Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat Catal 2019. [DOI: 10.1038/s41929-019-0364-x] [Citation(s) in RCA: 652] [Impact Index Per Article: 130.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Chen S, Abdel-Mageed AM, Gauckler C, Olesen SE, Chorkendorff I, Behm RJ. Selective CO methanation on isostructural Ru nanocatalysts: The role of support effects. J Catal 2019. [DOI: 10.1016/j.jcat.2019.03.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Kliewer C, Soled S, Kiss G. Morphological transformations during Fischer-Tropsch synthesis on a titania-supported cobalt catalyst. Catal Today 2019. [DOI: 10.1016/j.cattod.2018.05.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|