1
|
Heterogeneous catalytic materials for carboxylation reactions with CO2 as reactant. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
2
|
Fan SC, Chen SQ, Wang JW, Li YP, Zhang P, Wang Y, Yuan W, Zhai QG. Precise Introduction of Single Vanadium Site into Indium-Organic Framework for CO 2 Capture and Photocatalytic Fixation. Inorg Chem 2022; 61:14131-14139. [PMID: 35998379 DOI: 10.1021/acs.inorgchem.2c02250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The capture and fixation of CO2 under mild conditions is a cost-effective route to reduce greenhouse gases, but it is challenging because of the low conversion and selectivity issues. Metal-organic frameworks (MOFs) are promising in the fields of adsorption and catalysis because of their structural tunability and variability. However, the precise structural design of MOFs is always pursued and elusive. In this work, a metal-mixed MOF (SNNU-97-InV) was designed by precisely introducing single vanadium site into the isostructural In-MOF (SNNU-97-In). The single V sites clearly change the interactions between the MOF framework and CO2 molecules, leading to a 71.3% improvement in the CO2 adsorption capacity. At the same time, the enhanced light absorption enables SNNU-97-InV to efficiently convert CO2 into cyclic carbonates (CCs) with epoxides under illumination. Controlled experiments showed that the promoted performance of SNNU-97-InV may be that the V═O site can more easily combine with CO2 and convert them into an intermediate state under illumination, and the possible mechanism was thus speculated.
Collapse
Affiliation(s)
- Shu-Cong Fan
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Shuang-Qiu Chen
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Jia-Wen Wang
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Yong-Peng Li
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Peng Zhang
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Ying Wang
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Wenyu Yuan
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Quan-Guo Zhai
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| |
Collapse
|
3
|
Bang S, Jang JY, Ko YJ, Lee SM, Kim HJ, Son SU. Hydroboration of Hollow Microporous Organic Polymers: A Promising Postsynthetic Modification Method for Functional Materials. ACS Macro Lett 2022; 11:1034-1040. [DOI: 10.1021/acsmacrolett.2c00385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sohee Bang
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - June Young Jang
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Yoon-Joo Ko
- Laboratory of Nuclear Magnetic Resonance, NCIRF, Seoul National University, Seoul 08826, Korea
| | | | - Hae Jin Kim
- Korea Basic Science Institute, Daejeon 34133, Korea
| | - Seung Uk Son
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
4
|
Hao Y, Yan X, Liu X, Qin S, Zhu Z, Panchal B, Chang T. Urea-based covalent organic crown polymers and KI electrostatic synergy in CO2 fixation reaction: A combined experimental and theoretical study. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2021.101867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Gholipour B, Zonouzi A, Rostamnia S, Liu X. Single-pot tandem oxidative/C-H modification amidation process using ultrasmall Pd NP-encapsulated porous organosilica nanotubes. RSC Adv 2022; 12:4276-4287. [PMID: 35425446 PMCID: PMC8981255 DOI: 10.1039/d1ra08682k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/16/2022] [Indexed: 11/25/2022] Open
Abstract
Herein, we studied a single-pot method with a dual catalysis process towards the conversion of primary aromatic alcohols to amides using ultrasmall PdNPs of controlled uniform size (1.8 nm) inside hybrid mesoporous organosilica nanotubes (MO-NTs). The catalyst exhibited excellent performance in water under mild conditions and showed high stability. The catalytic activity towards the tandem oxidation of alcohols in the presence of amine salts and H2O2 to their corresponding amides without producing byproducts was evaluated, and high yields were obtained for all products. The structure of the organosilica nanotubes containing palladium nanoparticles was investigated using various characterization techniques such as XRD, TEM, BET, solid-state 29Si NMR and solid-state 13C CP MAS NMR. Catalyst recycling tests showed that the catalytic power of PdNPs@B-SNTs was preserved after 8 cycles and a slight decrease in catalyst activity was observed.
Collapse
Affiliation(s)
- Behnam Gholipour
- School of Chemistry, College of Science, University of Tehran P.O. Box 14155-6455 Tehran Iran
| | - Afsaneh Zonouzi
- School of Chemistry, College of Science, University of Tehran P.O. Box 14155-6455 Tehran Iran
| | - Sadegh Rostamnia
- Organic and Nano Group (ONG), Department of Chemistry, Iran University of Science and Technology (IUST) PO Box 16846-13114 Tehran Iran
| | - Xiao Liu
- Key Laboratory of Pesticide & Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University Wuhan 430079 P. R. China
| |
Collapse
|
6
|
Covalent Organic Frameworks for Simultaneous CO2 Capture and Selective Catalytic Transformation. Catalysts 2021. [DOI: 10.3390/catal11091133] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Combination of capture and simultaneous conversion of CO2 into valuable chemicals is a fascinating strategy for reducing CO2 emissions. Therefore, searching for heterogeneous catalysts for efficient catalytic conversion of CO2 is of great importance for carbon capture and utilization. Herein, we report a metalloporphyrin-based covalent organic framework (Co(II)@TA-TF COF) that can capture CO2 and simultaneously convert it into cyclic carbonates under mild conditions. The COF was designed to possess micropores for the adsorption of CO2 and integrated with cobalt(II) porphyrin (Co(II)@TAPP) units as catalytic sites into the vertices of the layered tetragonal networks. The structure of the Co(II)@TA-TF COF is unique where Co(II)@TAPP units are alternately stacked along the z direction with a slipped distance of 1.7 Å, which gives an accessible space to accommodate small molecules, making it possible to expose catalytic sites to substrates within the adjacent stacked layers. As a result, this COF is found to be highly effective for the addition of CO2 and epoxides. Importantly, the Co(II)@TA-TF COF exhibited a dramatic size selectivity for substrates. In conjunction with its reusability, our results highlight the development of a new function of COFs for targeting simultaneous CO2 absorption and utilization upon complementary exploration of the structural features of skeletons and pores. Such promising catalytic performance of the COF makes it possible for its potential practical application.
Collapse
|
7
|
Li Z, Sun J, Xu Q, Yin J. Homogeneous and Heterogeneous Ionic Liquid System: Promising “Ideal Catalysts” for the Fixation of CO
2
into Cyclic Carbonates. ChemCatChem 2021. [DOI: 10.1002/cctc.202001572] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Zhuo‐Jian Li
- School of Chemical Engineering State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 P. R. China
| | - Jian‐Fei Sun
- School of Chemical Engineering State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 P. R. China
| | - Qin‐Qin Xu
- School of Chemical Engineering State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 P. R. China
| | - Jian‐Zhong Yin
- School of Chemical Engineering State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 P. R. China
| |
Collapse
|
8
|
Wang G, Guo R, Wang W, Liu W. Natural porous nanorods used for high-efficient capture and chemical conversion of CO2. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Wang X, Yang L, Chen Y, Yang C, Lan J, Sun J. Metal-Free Triazine-Incorporated Organosilica Framework Catalyst for the Cycloaddition of CO2 to Epoxide under Solvent-Free Conditions. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04466] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Xin Wang
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Li Yang
- State Key Lab of Advanced Welding and Joining, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Yanglin Chen
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Chaokun Yang
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Jianwen Lan
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Jianmin Sun
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, P. R. China
| |
Collapse
|
10
|
Catalytic conversion of CO2 and shale gas-derived substrates into saturated carbonates and derivatives: Catalyst design, performances and reaction mechanism. J CO2 UTIL 2019. [DOI: 10.1016/j.jcou.2019.05.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|