1
|
Jin L, Selopal GS, Tong X, Perepichka DF, Wang ZM, Rosei F. Heavy-Metal-Free Colloidal Quantum Dots: Progress and Opportunities in Solar Technologies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402912. [PMID: 38923167 DOI: 10.1002/adma.202402912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Colloidal quantum dots (QDs) hold great promise as building blocks in solar technologies owing to their remarkable photostability and adjustable properties through the rationale involving size, atomic composition of core and shell, shapes, and surface states. However, most high-performing QDs in solar conversion contain hazardous metal elements, including Cd and Pb, posing significant environmental risks. Here, a comprehensive review of heavy-metal-free colloidal QDs for solar technologies, including photovoltaic (PV) devices, solar-to-chemical fuel conversion, and luminescent solar concentrators (LSCs), is presented. Emerging synthetic strategies to optimize the optical properties by tuning the energy band structure and manipulating charge dynamics within the QDs and at the QDs/charge acceptors interfaces, are analyzed. A comparative analysis of different synthetic methods is provided, structure-property relationships in these materials are discussed, and they are correlated with the performance of solar devices. This work is concluded with an outlook on challenges and opportunities for future work, including machine learning-based design, sustainable synthesis, and new surface/interface engineering.
Collapse
Affiliation(s)
- Lei Jin
- Centre for Energy, Materials and Telecommunications, National Institute of Scientific Research, 1650 Boul. Lionel-Boulet, Varennes, QC, J3X1P7, Canada
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | - Gurpreet Singh Selopal
- Department of Engineering, Faculty of Agriculture, Dalhousie University, 39 Cox Rd, Banting Building, Truro, NS, B2N 5E3, Canada
| | - Xin Tong
- Shimmer Center, Tianfu Jiangxi Laboratory, Chengdu, 641419, P. R. China
| | - Dmytro F Perepichka
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | - Zhiming M Wang
- Shimmer Center, Tianfu Jiangxi Laboratory, Chengdu, 641419, P. R. China
| | - Federico Rosei
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgeri 1, Trieste, 34127, Italy
| |
Collapse
|
2
|
Li F, Benetti D, Zhang M, Shi L, Feng J, Wei Q, Rosei F. Tunable 0D/2D/2D Nanocomposite Based on Green Zn-Doped CuInS 2 Quantum Dots and MoS 2/rGO as Photoelectrodes for Solar Hydrogen Production. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54790-54802. [PMID: 36455158 DOI: 10.1021/acsami.2c17625] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Charge separation, transmission, and light absorption properties are critical to determining the performance of photoelectrochemical (PEC) devices. An important strategy to control such properties is based on using heterostructured materials. Herein, a tunable zero-dimensional (0D)/two-dimensional (2D) heterostructure is designed based on quantum dots (QDs) and 2D nanosheets (NSs). Specifically, eco-friendly Zn-doped CuInS2 QDs prepared by hot injection were anchored on hierarchical (2D/2D) MoS2/rGO (MG) NSs through a facile sonication-assisted method to develop a 0D/2D/2D heterojunction-based photoelectrode for solar hydrogen production. The interfacial structure and band alignment between the proposed 0D QDs and 2D/2D MG NSs were engineered by modulating the Zn molar ratio during the QD synthesis. As proof of concept, the optimized 0D/2D/2D photoanode exhibits almost five times higher PEC activity than MG/CuInS2 and MoS2/Zn-CuInS2 NSs due to the enhanced light absorption, efficient charge separation, and transmission. Zn doping and the presence of graphene are essential in enhancing performance in the proposed heterostructure, reducing recombination of charge carriers, and improving sunlight absorption. This work shows how optimal band alignment control and carbon addition can facilitate charge transfer, enabling the development of highly efficient PEC devices based on 0D/2D/2D heterostructure nanocomposites.
Collapse
Affiliation(s)
- Faying Li
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, 1650 Boul. Lionel Boulet, Varennes, QuébecJ3X 1S2, Canada
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan250022, P. R. China
| | - Daniele Benetti
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, 1650 Boul. Lionel Boulet, Varennes, QuébecJ3X 1S2, Canada
| | - Min Zhang
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, 1650 Boul. Lionel Boulet, Varennes, QuébecJ3X 1S2, Canada
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing100084, China
| | - Li Shi
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, 1650 Boul. Lionel Boulet, Varennes, QuébecJ3X 1S2, Canada
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan250022, P. R. China
| | - Jinhui Feng
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan250022, P. R. China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan250022, P. R. China
| | - Federico Rosei
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, 1650 Boul. Lionel Boulet, Varennes, QuébecJ3X 1S2, Canada
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan250022, P. R. China
| |
Collapse
|
3
|
Qiu D, He C, Lu Y, Li Q, Chen Y, Cui X. Assembling γ-graphyne surrounding TiO 2 nanotube arrays: an efficient p-n heterojunction for boosting photoelectrochemical water splitting. Dalton Trans 2021; 50:15422-15432. [PMID: 34661591 DOI: 10.1039/d1dt01810h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoelectrochemical water splitting is an excellent strategy for hydrogen generation and it is pivotal to the development of photoanodes with sufficient sunlight harvesting, rapid charge separation, and enhanced electron injection efficiency. In this work, we rationally constructed a γ-graphyne/TiO2 (GY/TiO2) p-n heterojunction in which p-type γ-graphyne nanosheets were distributed in the three-dimensional space surrounding TiO2 nanotube arrays. The GY/TiO2 photoanode achieves a photocurrent density of 0.75 mA cm-2 at 1.23 V (vs. RHE), 1.7 times that of bare TiO2, and extends the electron lifetime of TiO2 from 0.51 to 1.16 ms. The improvement arises from moderate γ-graphyne modification, contributing to broadened light absorption, the suppressed recombination of electron-hole pairs, an increase in charge transfer, and a higher injection efficiency of surface electrons. This work provides a reliable approach for the utilization and conversion of sustainable solar energy.
Collapse
Affiliation(s)
- Dong Qiu
- Department of Materials Science, Fudan University, Shanghai 200433, PR China.
| | - Chengli He
- Department of Materials Science, Fudan University, Shanghai 200433, PR China.
| | - Yuxuan Lu
- Department of Materials Science, Fudan University, Shanghai 200433, PR China.
| | - Qiaodan Li
- Department of Materials Science, Fudan University, Shanghai 200433, PR China.
| | - Yang Chen
- Department of Materials Science, Fudan University, Shanghai 200433, PR China.
| | - Xiaoli Cui
- Department of Materials Science, Fudan University, Shanghai 200433, PR China.
| |
Collapse
|
4
|
Wei S, Xue S, Huang C, Che B, Zhang H, Sun L, Xu F, Xia Y, Cheng R, Zhang C, Wang T, Cen W, Zhu Y, Zhang Q, Chu H, Li B, Zhang K, Zheng S, Rosei F, Uesugi H. Multielement synergetic effect of NiFe 2O 4 and h-BN for improving the dehydrogenation properties of LiAlH 4. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00298h] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
NiFe2O4@h-BN composites significantly improved the dehydrogenation and rehydrogenation properties of LiAlH4. The Al4Ni3 and LiFeO2 found in doped LiAlH4, and Al1.1Ni0.9 in the process of heating, improved the dehydrogenation properties of LiAlH4.
Collapse
|
5
|
Niu H, Yang X, Wang Y, Li M, Zhang G, Pan P, Qi Y, Yang Z, Wang J, Liao Z. Electrochemiluminescence Detection of Sunset Yellow by Graphene Quantum Dots. Front Chem 2020; 8:505. [PMID: 32714896 PMCID: PMC7344220 DOI: 10.3389/fchem.2020.00505] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/15/2020] [Indexed: 12/12/2022] Open
Abstract
Use of food additives, such as colorants and preservatives, is highly regulated because of their potential health risks to humans. Therefore, it is important to detect these compounds effectively to ensure conformance with industrial standards and to mitigate risk. In this paper, we describe the preparation and performance of an ultrasensitive electrochemiluminescence (ECL) sensor for detecting a key food additive, sunset yellow. The sensor uses graphene quantum dots (GQDs) as the luminescent agent and potassium persulfate as the co-reactant. Strong and sensitive ECL signals are generated in response to trace amounts of added sunset yellow. A detection limit (signal-to-noise ratio = 3) of 7.6 nM and a wide linear range from 2.5 nM to 25 μM are demonstrated. A further advantage of the method is that the luminescent reagents can be recycled, indicating that the method is sustainable, in addition to being simple and highly sensitive.
Collapse
Affiliation(s)
- Huimin Niu
- Tianjin Key Laboratory of Film Electronic and Communication Devices, Advanced Materials and Printed Electronics Center, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin, China
| | - Xin Yang
- Tianjin Key Laboratory of Film Electronic and Communication Devices, Advanced Materials and Printed Electronics Center, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin, China
| | - Yilei Wang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Mingchen Li
- Tianjin Key Laboratory of Film Electronic and Communication Devices, Advanced Materials and Printed Electronics Center, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin, China
| | - Guangliang Zhang
- Tianjin Key Laboratory of Film Electronic and Communication Devices, Advanced Materials and Printed Electronics Center, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin, China
| | - Peng Pan
- Tianjin Key Laboratory of Film Electronic and Communication Devices, Advanced Materials and Printed Electronics Center, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin, China
| | - Yangyang Qi
- Tianjin Key Laboratory of Film Electronic and Communication Devices, Advanced Materials and Printed Electronics Center, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin, China
| | - Zhengchun Yang
- Tianjin Key Laboratory of Film Electronic and Communication Devices, Advanced Materials and Printed Electronics Center, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin, China
| | - John Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore
| | - Zhenyu Liao
- Pony Testing International Group, Tianjin, China
- Tianjin Food Safety Inspection Technology Institute, Tianjin, China
| |
Collapse
|