1
|
Zheng F, Cao Z, Lin T, Tu B, Shao S, Yang C, An P, Chen W, Fang Q, Wang Y, Tang Z, Li G. Nanocavity in hollow sandwiched catalysts as substrate regulator for boosting hydrodeoxygenation of biomass-derived carbonyl compounds. SCIENCE ADVANCES 2024; 10:eadn9896. [PMID: 38758785 PMCID: PMC11100558 DOI: 10.1126/sciadv.adn9896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/12/2024] [Indexed: 05/19/2024]
Abstract
Hydrodeoxygenation of oxygen-rich molecules toward hydrocarbons is attractive yet challenging in the sustainable biomass upgrading. The typical supported metal catalysts often display unstable catalytic performances owing to the migration and aggregation of metal nanoparticles (NPs) into large sizes under harsh conditions. Here, we develop a crystal growth and post-synthetic etching method to construct hollow chromium terephthalate MIL-101 (named as HoMIL-101) with one layer of sandwiched Ru NPs as robust catalysts. Impressively, HoMIL-101@Ru@MIL-101 exhibits the excellent activity and stability for hydrodeoxygenation of biomass-derived levulinic acid to gamma-valerolactone under 50°C and 1-megapascal H2, and its activity is about six times of solid sandwich counterparts, outperforming the state-of-the-art heterogeneous catalysts. Control experiments and theoretical simulation clearly indicate that the enrichment of levulinic acid and H2 by nanocavity as substrate regulator enables self-regulating the backwash of both substrates toward Ru NPs sandwiched in MIL-101 shells for promoting reaction with respect to solid counterparts, thus leading to the substantially enhanced performance.
Collapse
Affiliation(s)
- Fengbin Zheng
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Zhouwen Cao
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tian Lin
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Bin Tu
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shengxian Shao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Caoyu Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Pengfei An
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wenxing Chen
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100181, P.R. China
| | - Qiaojun Fang
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yinglong Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guodong Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
2
|
Qu R, Junge K, Beller M. Hydrogenation of Carboxylic Acids, Esters, and Related Compounds over Heterogeneous Catalysts: A Step toward Sustainable and Carbon-Neutral Processes. Chem Rev 2023; 123:1103-1165. [PMID: 36602203 DOI: 10.1021/acs.chemrev.2c00550] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The catalytic hydrogenation of esters and carboxylic acids represents a fundamental and important class of organic transformations, which is widely applied in energy, environmental, agricultural, and pharmaceutical industries. Due to the low reactivity of the carbonyl group in carboxylic acids and esters, this type of reaction is, however, rather challenging. Hence, specifically active catalysts are required to achieve a satisfactory yield. Nevertheless, in recent years, remarkable progress has been made on the development of catalysts for this type of reaction, especially heterogeneous catalysts, which are generally dominating in industry. Here in this review, we discuss the recent breakthroughs as well as milestone achievements for the hydrogenation of industrially important carboxylic acids and esters utilizing heterogeneous catalysts. In addition, related catalytic hydrogenations that are considered of importance for the development of cleaner energy technologies and a circular chemical industry will be discussed in detail. Special attention is paid to the insights into the structure-activity relationship, which will help the readers to develop rational design strategies for the synthesis of more efficient heterogeneous catalysts.
Collapse
Affiliation(s)
- Ruiyang Qu
- Leibniz-Institut für Katalyse, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| | - Kathrin Junge
- Leibniz-Institut für Katalyse, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| |
Collapse
|
3
|
Leal Villarroel E, Seguel J, Rodríguez P, Blanco E, Escalona N, Pecchi G, Sepúlveda C. Conversion of Levulinic Acid over Ru/SrZrO
3
and Ru/BaZrO
3
Supported Basic Catalysts. ChemCatChem 2022. [DOI: 10.1002/cctc.202201170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Edgardo Leal Villarroel
- Facultad de Ciencias Químicas Universidad de Concepción Edmundo Larenas 129 Chile
- Millennium Nuclei on Catalytic Process towards Sustainable Chemistry (CSC) Chile
| | - Juan Seguel
- Facultad de Ciencias Químicas Universidad de Concepción Edmundo Larenas 129 Chile
- Millennium Nuclei on Catalytic Process towards Sustainable Chemistry (CSC) Chile
| | - Pedro Rodríguez
- Facultad de Ciencias Químicas Universidad de Concepción Edmundo Larenas 129 Chile
- Millennium Nuclei on Catalytic Process towards Sustainable Chemistry (CSC) Chile
| | - Elodie Blanco
- Millennium Nuclei on Catalytic Process towards Sustainable Chemistry (CSC) Chile
- Departamento de Ingeniería Química y Bioprocesos Escuela de Ingeniería Pontificia Universidad Católica de Chile Chile
| | - Néstor Escalona
- Millennium Nuclei on Catalytic Process towards Sustainable Chemistry (CSC) Chile
- Departamento de Ingeniería Química y Bioprocesos Escuela de Ingeniería Pontificia Universidad Católica de Chile Chile
- Facultad de Química y de Farmacia Pontificia Universidad Católica de Chile Chile
- Unidad de Desarrollo Tecnológico Universidad de Concepción Chile
| | - Gina Pecchi
- Facultad de Ciencias Químicas Universidad de Concepción Edmundo Larenas 129 Chile
- Millennium Nuclei on Catalytic Process towards Sustainable Chemistry (CSC) Chile
| | - Catherine Sepúlveda
- Facultad de Ciencias Químicas Universidad de Concepción Edmundo Larenas 129 Chile
- Millennium Nuclei on Catalytic Process towards Sustainable Chemistry (CSC) Chile
| |
Collapse
|
4
|
Abusuek DA, Tkachenko OP, Bykov AV, Sidorov AI, Matveeva VG, Sulman MG, Nikoshvili LZ. ZSM-5 as a support for Ru-containing catalysts of levulinic acid hydrogenation: Influence of the reaction conditions and the zeolite acidity. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Bunrit A, Butburee T, Liu M, Huang Z, Meeporn K, Phawa C, Zhang J, Kuboon S, Liu H, Faungnawakij K, Wang F. Photo–Thermo-Dual Catalysis of Levulinic Acid and Levulinate Ester to γ-Valerolactone. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04959] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Anon Bunrit
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics (DICP), Energy College (EC), Chinese Academy of Sciences (CAS), Dalian 116023, China
| | - Teera Butburee
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Pathum Thani 12120, Thailand
| | - Meijiang Liu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics (DICP), Energy College (EC), Chinese Academy of Sciences (CAS), Dalian 116023, China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Zhipeng Huang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics (DICP), Energy College (EC), Chinese Academy of Sciences (CAS), Dalian 116023, China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Keerati Meeporn
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Pathum Thani 12120, Thailand
| | - Chaiyasit Phawa
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Pathum Thani 12120, Thailand
| | - Jian Zhang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics (DICP), Energy College (EC), Chinese Academy of Sciences (CAS), Dalian 116023, China
| | - Sanchai Kuboon
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Pathum Thani 12120, Thailand
| | - Huifang Liu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics (DICP), Energy College (EC), Chinese Academy of Sciences (CAS), Dalian 116023, China
| | - Kajornsak Faungnawakij
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Pathum Thani 12120, Thailand
| | - Feng Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics (DICP), Energy College (EC), Chinese Academy of Sciences (CAS), Dalian 116023, China
| |
Collapse
|
6
|
Zhu T, Wang R, Chen Z, Ji F, Dong Y, Cheng H, Yang M. Synthesis of Bifunctional Ru-Pd Catalysts Following the Double Reduction Method: Hydrogenation/Dehydrogenation of Liquid Organic Hydrogen Carriers. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00425a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Catalytic hydrogenation and dehydrogenation of liquid organic hydrogen carriers (LOHCs) have attracted immense attention as this is the most attractive strategy for the storage and release of hydrogen. Heterogeneous catalysts...
Collapse
|
7
|
Decarpigny C, Noël S, Addad A, Ponchel A, Monflier E, Bleta R. Robust Ruthenium Catalysts Supported on Mesoporous Cyclodextrin-Templated TiO 2-SiO 2 Mixed Oxides for the Hydrogenation of Levulinic Acid to γ-Valerolactone. Int J Mol Sci 2021; 22:1721. [PMID: 33572104 PMCID: PMC7915766 DOI: 10.3390/ijms22041721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 11/17/2022] Open
Abstract
In this paper, we present a versatile template-directed colloidal self-assembly method for the fabrication in aqueous phase of composition-tuned mesoporous RuO2@TiO2-SiO2 catalysts. Randomly methylated β-cyclodextrin/Pluronic F127 supramolecular assemblies were used as soft templates, TiO2 colloids as building blocks, and tetraethyl orthosilicate as a silica source. Catalysts were characterized at different stages of their synthesis using dynamic light scattering, N2-adsorption analysis, powder X-ray diffraction, temperature programmed reduction, high-resolution transmission electron microscopy, high-angle annular bright-field and dark-field scanning transmission electron microscopy, together with EDS elemental mapping. Results revealed that both the supramolecular template and the silica loading had a strong impact on the pore characteristics and crystalline structure of the mixed oxides, as well as on the morphology of the RuO2 nanocrystals. Their catalytic performance was then evaluated in the aqueous phase hydrogenation of levulinic acid (LA) to γ-valerolactone (GVL) under mild conditions (50 °C, 50 bar H2). Results showed that the cyclodextrin-derived catalyst displayed almost quantitative LA conversion and 99% GVL yield in less than one hour. Moreover, this catalyst could be reused at least five times without loss of activity. This work offers an effective approach to the utilization of cyclodextrins for engineering the surface morphology of Ru nanocrystals and pore characteristics of TiO2-based materials for catalytic applications in hydrogenation reactions.
Collapse
Affiliation(s)
- Cédric Decarpigny
- University Artois, CNRS, Centrale Lille, ENSCL, Univ. Lille, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-62300 Lens, France; (C.D.); (S.N.); (A.P.); (E.M.)
| | - Sébastien Noël
- University Artois, CNRS, Centrale Lille, ENSCL, Univ. Lille, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-62300 Lens, France; (C.D.); (S.N.); (A.P.); (E.M.)
| | - Ahmed Addad
- University Lille, CNRS, INRA, ENSCL, UMR 8207-UMET-Unité Matériaux et Transformations, F-59000 Lille, France;
| | - Anne Ponchel
- University Artois, CNRS, Centrale Lille, ENSCL, Univ. Lille, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-62300 Lens, France; (C.D.); (S.N.); (A.P.); (E.M.)
| | - Eric Monflier
- University Artois, CNRS, Centrale Lille, ENSCL, Univ. Lille, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-62300 Lens, France; (C.D.); (S.N.); (A.P.); (E.M.)
| | - Rudina Bleta
- University Artois, CNRS, Centrale Lille, ENSCL, Univ. Lille, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-62300 Lens, France; (C.D.); (S.N.); (A.P.); (E.M.)
| |
Collapse
|
8
|
Gallegos-Hernández AY, Martínez-Rosales M, Rico JL, Avalos-Borja M. Improvement in the hydrodesulfurization of dibenzothiophene over supported NiMoW catalysts. REACTION KINETICS MECHANISMS AND CATALYSIS 2021. [DOI: 10.1007/s11144-020-01909-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|