1
|
Xu Y, Wang P, Zhan X, Dai W, Li Q, Zou J, Luo X. Enhancing the Lewis acidity of single atom Tb via introduction of boron to achieve efficient photothermal synergistic CO 2 cycloaddition. J Colloid Interface Sci 2024; 673:134-142. [PMID: 38875784 DOI: 10.1016/j.jcis.2024.06.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/27/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024]
Abstract
Nowadays, it is becoming increasingly urgent to lower the escalating carbon dioxide (CO2) to reduce greenhouse effect. Fortunately, it is an ideal strategy by using the inexhaustible solar energy as the driving force to manipulate the cycloaddition reaction, the atomic efficiency of which is 100 %. This work represents the first attempt on utilization of rare-earth metal Tb with atomic dispersion, and the structure of Tb coordinated with 4 N-atoms and 2B-atoms was constructed on interconnected carbon hollow spheres. The introduction of electron-deficient B reduces the electron density of Tb, thereby boosting Lewis acidity and promoting the occurrence of ring-opening reaction. The mechanism exploration enunciates that TbN4B2/C is a photothermal synergistic catalyst, the combined action of photogenerated electrons and strong Lewis acidic site of Tb reduces the free energy of the rate-determining step, and then improving the yield of cyclic carbonate up to 739 mmol g-1h-1.
Collapse
Affiliation(s)
- Yong Xu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Ping Wang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Xiaojun Zhan
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Weili Dai
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, PR China.
| | - Qing Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Jianping Zou
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Xubiao Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, PR China; School of Life Science, Jinggangshan University, Ji'an 343009, PR China
| |
Collapse
|
2
|
Moi R, Bedi S, Biradha K. Amine Functionalization of Channels of Metal-Organic Frameworks for Effective Chemical Fixation of Carbon Dioxide: A Comparative Study with Three Newly Designed Porous Networks. ChemistryOpen 2024; 13:e202400110. [PMID: 38738745 PMCID: PMC11633332 DOI: 10.1002/open.202400110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Indexed: 05/14/2024] Open
Abstract
Catalytic transformation of CO2 into value-added chemical products can provide an appropriate solution for the raising environmental issues. To date, various metal-organic frameworks (MOFs) with transition metal ions have been explored for CO2 capture and conversion, but alkaline earth metal-based MOFs are comparatively less studied. Metal ions like Sr(II) having relatively large radius give rise to a high coordination number resulting in higher stability of the MOFs. Moreover, the introduction of N-rich functional group in organic linker like -NH2, -CONH- and triazole into MOF backbone enhance their CO2 capture and conversion efficiency. Herein, the effect of amine group on the catalytic efficiency of MOFs for CO2 cycloaddition with epoxides under solvent free and ambient conditions are presented. The di-carboxylates, such as 5-aminoisophthalate (AmIP) and 5-bromoisophthalate (BrIP) were utilized to synthesize Sr(II) based MOFs. The Zn(II) MOF was synthesized using tetra-carboxylate containing amide spacer (OAT) and 4-amino-4H-1,2,4-triazole (AMT). All three MOFs exhibited porous networks with guest available volume ranging from 15 to 58 %. The catalytic efficiency of the MOFs towards carbon dioxide fixation reaction was explored. The catalytic performances revealed that the presence of amine group in the channels enhances the catalytic efficiency of the MOFs.
Collapse
Affiliation(s)
- Rajib Moi
- Department of ChemistryIndian Institute of Technology Kharagpur721302KharagpurIndia
| | - Swati Bedi
- Department of ChemistryIndian Institute of Technology Kharagpur721302KharagpurIndia
| | - Kumar Biradha
- Department of ChemistryIndian Institute of Technology Kharagpur721302KharagpurIndia
| |
Collapse
|
3
|
Wang J, Li X, Yi G, Teong SP, Chan SP, Zhang X, Zhang Y. Noncrystalline Zeolitic Imidazolate Frameworks Tethered with Ionic Liquids as Catalysts for CO 2 Conversion into Cyclic Carbonates. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10277-10284. [PMID: 38361486 DOI: 10.1021/acsami.3c19500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Noncrystalline zeolitic imidazolate frameworks (ZIFs) tethered with ionic liquids (ILs) were successfully employed as catalysts for mild CO2 conversion into cyclic carbonates for the first time. Notably, noncrystalline ZIFs exhibit outstanding catalytic performance in terms of activity, stability, and substrate suitability. Z3 was obtained through the simultaneous incorporation of a boronic acid group and ILs into its ZIF framework and exhibited a superior catalytic activity. A reaction mechanism for the propylene oxide-CO2 cycloaddition has been proposed, which integrates experimental findings with density functional theory calculations. The results indicate that zinc, ILs, and boronic acid play crucial roles in achieving high activity. Zinc and ILs are identified as key contributors to epoxide activation and ring opening, while boronic acid plays a crucial role in stabilizing the turnover frequency-determining transition states. The simplicity of this ZIF synthesis approach, combined with the high activity, stability, and versatility of the products, facilitates practical and efficient conversion of CO2 and epoxides into cyclic carbonates.
Collapse
Affiliation(s)
- Jinquan Wang
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road Jurong Island, Singapore 627833, Singapore
| | - Xiukai Li
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road Jurong Island, Singapore 627833, Singapore
| | - Guangshun Yi
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road Jurong Island, Singapore 627833, Singapore
| | - Siew Ping Teong
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road Jurong Island, Singapore 627833, Singapore
| | - Shook Pui Chan
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road Jurong Island, Singapore 627833, Singapore
| | - Xinglong Zhang
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Singapore
| | - Yugen Zhang
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road Jurong Island, Singapore 627833, Singapore
| |
Collapse
|
4
|
Hu J, Liu Z, Tang S, Yao M, Zhang D, Cui M, Yang D, Tang J, Qiao X, Zhang Z. One-step synthesis of a ZIF-8/90-based type I porous liquid. Dalton Trans 2023; 52:17213-17218. [PMID: 37946556 DOI: 10.1039/d3dt02423g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
A Type I porous liquid based on the mixed-linker zeolitic imidazolate framework, ZIF-8/90-PL, has been prepared by a one-step imine condensation reaction and characterized by X-ray diffraction, FT-IR spectroscopy, TGA and rheology analysis. This facile preparation strategy of a porous liquid has enormous industrial production and application potential, with over one kilogram of ZIF-8/90-PL being successfully prepared. ZIF-8/90-PL can be directly used as a liquid absorbent or be co-processed with alumina hollow fibers to form a composite membrane with improved selectivity in the context of CO2 separation from CH4 or N2. This simple synthesis method is expected to be extended to other metal-organic frameworks.
Collapse
Affiliation(s)
- Jingqiu Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhunan Road, Nanjing 211816, China
| | - Zhaofang Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhunan Road, Nanjing 211816, China
| | - Shuangyin Tang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhunan Road, Nanjing 211816, China
| | - Meng Yao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhunan Road, Nanjing 211816, China
| | - Dezhen Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhunan Road, Nanjing 211816, China
| | - Mifen Cui
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhunan Road, Nanjing 211816, China
| | - Dong Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhunan Road, Nanjing 211816, China
| | - Jihai Tang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhunan Road, Nanjing 211816, China
- Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), No. 5 Xinmofan Road, Nanjing 210009, China.
| | - Xu Qiao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhunan Road, Nanjing 211816, China
- Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), No. 5 Xinmofan Road, Nanjing 210009, China.
| | - Zhuxiu Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhunan Road, Nanjing 211816, China
| |
Collapse
|
5
|
Qin P, Zhang C, Guo Y, Zhang D, Liu Q, Li Y, Song H, Lv Z. Hydroxyl and amino dual-functionalized core-shell molecular sieves featuring hydrogen bond donor groups for efficient CO 2 cycloaddition. J Colloid Interface Sci 2023; 656:68-79. [PMID: 37984172 DOI: 10.1016/j.jcis.2023.11.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
In CO2 cycloaddition reactions, hydrogen bond donor (HBD) groups are considered environmentally friendly substitutes for metals to promote epoxide ring-opening through interactions with nucleophilic anions. A core-shell structured ILs-based catalyst (mSiO2@MCM-NH2-OH) with dual hydrogen bond donors (-OH and -NH2) was synthesized by copolymerization strategy. Through in-depth characterization, it has been demonstrated that the catalyst (mSiO2@MCM-NH2-OH) possesses multiple catalytic active sites including -OH, -NH2, Br- groups, and the synergistic effect of double HBD groups (-OH and -NH2) and Lewis base (Br-) significantly improved the catalytic activity. Meanwhile, the core-shell structure of the catalyst effectively prevents the loss of active components, which makes the yield remain at about 94 % after 10 cycles. Based on Density Functional Theory (DFT) calculations, a synergistic catalytic mechanism, which involves dual hydrogen-bond donors (-OH and -NH2) and Lewis bases (Br-) was proposed. The cooperative interaction between -OH/-NH2 and Br- reduced the ring-opening barrier of epoxide from 58.6 to 32.0 kcal mol-1 significantly, and thereby facilitated the CO2 cycloaddition reaction.
Collapse
Affiliation(s)
- Peng Qin
- State Key Laboratory Base for Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chao Zhang
- State Key Laboratory Base for Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, China; Jincheng Research Institute of Opto-mechatronics Industry, Jincheng 048000, China.
| | - Yuying Guo
- State Key Laboratory Base for Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Delu Zhang
- State Key Laboratory Base for Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Qian Liu
- State Key Laboratory Base for Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yadong Li
- Jincheng Research Institute of Opto-mechatronics Industry, Jincheng 048000, China; Shanxi Key Laboratory of Advanced Semiconductor Optoelectronic Devices and Integrated Systems, Jincheng 048000, China
| | - Hongbing Song
- State Key Laboratory Base for Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhiguo Lv
- State Key Laboratory Base for Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
6
|
Aytar E. Schiff base Cu(II) complexes as catalysts in the transformation of CO2 to cyclic carbonates at both high and atmospheric pressure. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
7
|
Exploring the Potential of Nanosized Oxides of Zinc and Tin as Recyclable Catalytic Components for the Synthesis of Cyclic Organic Carbonates under Atmospheric CO2 Pressure. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
8
|
Delgado-Marín JJ, Martín-García I, Villalgordo-Hernández D, Alonso F, Ramos-Fernández EV, Narciso J. Valorization of CO 2 through the Synthesis of Cyclic Carbonates Catalyzed by ZIFs. Molecules 2022; 27:molecules27227791. [PMID: 36431891 PMCID: PMC9699457 DOI: 10.3390/molecules27227791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
One way to exploit CO2 is to use it as a feedstock for the production of cyclic carbonates via its reaction with organic epoxides. As far as we know, there is still no heterogeneous catalyst that accelerates the reaction in a selective, efficient and industrially usable way. Cobalt and zinc-based zeolitic imidazole frameworks (ZIFs) have been explored as heterogeneous catalysts for this reaction. In particular, we have prepared ZIF-8 and ZIF-67 catalysts, which have been modified by partial replacement of 2-methylimidazole by 1,2,4-triazole, in order to introduce uncoordinated nitrogen groups with the metal. The catalysts have shown very good catalytic performance, within the best of the heterogeneous catalysts tested in the cycloaddition of CO2 with epichlorohydrin. The catalytic activity is due ultimately to defects on the outer surface of the crystal, and varies in the order of ZIF-67-m > ZIF-67 > ZiF-8-m = ZIF-8. Notably, reactions take place under mild reaction conditions and without the use of co-catalysts.
Collapse
Affiliation(s)
- José J. Delgado-Marín
- Instituto de Materiales, Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
| | - Iris Martín-García
- Instituto de Síntesis Orgánica, Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
| | - David Villalgordo-Hernández
- Instituto de Materiales, Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
| | - Francisco Alonso
- Instituto de Síntesis Orgánica, Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
| | - Enrique V. Ramos-Fernández
- Instituto de Materiales, Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
- Correspondence:
| | - Javier Narciso
- Instituto de Materiales, Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
- Instituto de Investigación Sanitaria Biomédica de Alicante (ISABIAL), 03690 Alicante, Spain
| |
Collapse
|
9
|
Nonflammable, robust and recyclable hydrophobic zeolitic imidazolate frameworks/sponge with high oil absorption capacity for efficient oil/water separation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Pd, Ni, Fe and Cu complexes containing a novel SNS-pincer ligand bearing pyridine: Synthesis and catalytic application to form cyclic carbonates. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Alhafez A, Aytar E, Kilic A. Enhancing catalytic strategy for cyclic carbonates synthesized from CO2 and epoxides by using cobaloxime-based double complex salts as catalysts. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Liu N, Wu F, Xu J, Xue B, Luo J. ZrO2 Supported on Graphitic Carbon Nitride Based on Metal–Nitrogen Interaction for Enhanced Catalytic Cycloaddition of CO2 to Cyclic Carbonates. Catal Letters 2022. [DOI: 10.1007/s10562-022-04083-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
13
|
CeO2-ZrO2 Solid Solution Catalyzed and Moderate Acidic–Basic Sites Dominated Cycloaddition of CO2 with Epoxides: Halogen-Free Synthesis of Cyclic Carbonates. Catalysts 2022. [DOI: 10.3390/catal12060632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
For the production of cyclic carbonates from the cycloaddition of CO2 with epoxides, halogen pollution and product purity are two of the most common problems due to the usage of homogeneous halogen-containing catalysts such as ammonium salt and alkali metal halide. Hence, the development of a novel, halogen-free and efficient catalyst for the synthesis of high-purity cyclic carbonates is significant. Here, a series of acid–base bifunctional Ce1-xZrxO2 nanorods were successfully prepared. The Ce1-xZrxO2 nanorods could catalyze the cycloaddition of CO2 with epoxides efficiently without any halogen addition. Especially for the Ce0.7Zr0.3O2 catalyst, a conversion of 96% with 100% 1,2-butylene carbonate selectivity was achieved. The excellent catalytic performance of Ce1-xZrxO2 nanorods is attributed to the formation of the CeO2-ZrO2 solid solution, which contributes to abundant moderate acidic–basic active sites on the catalyst surface. It is the synergistic effect of moderate acidic–basic sites that dominates the conversion of CO2 with epoxides, which will supply important references for the synthesis of efficient metal oxide catalyst for the cycloaddition of CO2 with epoxides.
Collapse
|
14
|
Gamze Sogukomerogullari H, Delidoğan A, Aytar E, Köse A, Sönmez M. Pd(II), Ni(II), Cu(II) and Co(II) complexes bearing “SNS” Pincer Type Ligand: Application as Catalysts for chemical CO2 conversion to obtain cyclic carbonates. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Abdelhamid HN. Removal of Carbon Dioxide using Zeolitic Imidazolate Frameworks: Adsorption and Conversion via Catalysis. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hani Nasser Abdelhamid
- Advanced Multifunctional Materials Laboratory, Department of Chemistry Assiut University Assiut Egypt
- Proteomics Laboratory for Clinical Research and Materials Science, Department of Chemistry Assiut University Assiut Egypt
- Nanotechnology Research Centre (NTRC) The British University in Egypt Cairo Egypt
| |
Collapse
|
16
|
Ba T, Shen C, Zhang X, Liu CJ. Preparation and characterization of an edible metal-organic framework/rice wine residue composite. RSC Adv 2022; 12:14639-14643. [PMID: 35702247 PMCID: PMC9104762 DOI: 10.1039/d2ra02202h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/06/2022] [Indexed: 11/21/2022] Open
Abstract
In this communication, using rice wine residue (RWR) as the support, an edible γ-cyclodextrin-metal-organic framework/RWR (γ-CD-MOF/RWR) composite with a macroscopic morphology was synthesized. The obtained edible composite is promising for applications in drug delivery, adsorption, food processing, and others.
Collapse
Affiliation(s)
- Teer Ba
- Collaborative Innovation Center of Chemical Science & Engineering, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
| | - Chenyang Shen
- Collaborative Innovation Center of Chemical Science & Engineering, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
| | - Xiaoshan Zhang
- Collaborative Innovation Center of Chemical Science & Engineering, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
| | - Chang-Jun Liu
- Collaborative Innovation Center of Chemical Science & Engineering, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
| |
Collapse
|
17
|
Zhu K, Li Y, Li Z, Liu Y, Wu H, Li H. In situ activation of COOH-functionalized ZIF-90-enabled reductive CO 2N-formylation. Chem Commun (Camb) 2022; 58:12712-12715. [DOI: 10.1039/d2cc04643a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A heterogeneous COOH-functionalized ZIF-90 porous catalyst (ZIF-90-C) was prepared for enhanced CO2 adsorption/activation, and the in situ generated –COO− species can efficiently promote the N-formylation reaction.
Collapse
Affiliation(s)
- Kaixun Zhu
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| | - Yuncong Li
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| | - Zhengyi Li
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| | - Yixuan Liu
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| | - Hongguo Wu
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
- College of Pharmacy, Guizhou University, Guiyang, 550025, China
| | - Hu Li
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| |
Collapse
|
18
|
Ghosh AK, Saha U, Biswas S, ALOthman ZA, Islam MA, Dolai M. Anthracene-triazole-dicarboxylate-Based Zn(II) 2D Metal Organic Frameworks for Efficient Catalytic Carbon Dioxide Fixation into Cyclic Carbonates under Solvent-Free Condition and Theoretical Study for the Reaction Mechanism. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Aloke Kumar Ghosh
- Department of Chemistry, Prabhat Kumar College, Purba Medinipur, Contai, 721 404 West Bengal, India
| | - Urmila Saha
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata, 700 073 West Bengal, India
| | - Surajit Biswas
- Department of Chemistry, University of Kalyani, Nadia, Kalyani, 741 235 West Bengal, India
| | - Zeid A. ALOthman
- Department of Chemistry, College of Science, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Md Ataul Islam
- Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, M13 9PL Manchester, U.K
| | - Malay Dolai
- Department of Chemistry, Prabhat Kumar College, Purba Medinipur, Contai, 721 404 West Bengal, India
| |
Collapse
|
19
|
Catalytic conversion of CO2: Electrochemically to ethanol and thermochemically to cyclic carbonates using nanoporous polytriazine. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
20
|
Liu X, Hu C, Wu J, Zhu H, Li Y, Cui P, Wei F. The assembly of novel Ag-based NP@MOFs mesoporous spherical composites and their enhanced catalytic performance in photodegradation and chemical conversion of CO2 with epoxide. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2020.121889] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Xiang W, Shen C, Lu Z, Chen S, Li X, Zou R, Zhang Y, Liu CJ. CO2 cycloaddition over ionic liquid immobilized hybrid zeolitic imidazolate frameworks: Effect of Lewis acid/base sites. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116429] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Škrjanc A, Byrne C, Zabukovec Logar N. Green Solvents as an Alternative to DMF in ZIF-90 Synthesis. Molecules 2021; 26:1573. [PMID: 33809312 PMCID: PMC8001175 DOI: 10.3390/molecules26061573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 11/16/2022] Open
Abstract
The use of green solvents as an alternative to dimethylformamide (DMF) in the synthesis of zeolitic imidazolate framework-90 (ZIF-90) was investigated. Two biobased aprotic dipolar solvents CyreneTM and γ-valerolactone (GVL) proved to successfully replace DMF in the synthesis at room temperature with a high product yield. While the CyreneTM-based product shows reduced porosity after activation, the use of GVL resulted in materials with preserved crystallinity and porosity after activation, without prior solvent exchange and a short treatment at 200 °C. The primary particles of 30 nm to 60 nm in all products further form agglomerates of different size and interparticle mesoporosity, depending on the type and molar ratios of solvents used.
Collapse
Affiliation(s)
- Aljaž Škrjanc
- Department of Inorganic Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia; (A.Š.); (C.B.)
- Graduate School, University of Nova Gorica, Vipavska 13, SI-5000 Nova Gorica, Slovenia
| | - Ciara Byrne
- Department of Inorganic Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia; (A.Š.); (C.B.)
| | - Nataša Zabukovec Logar
- Department of Inorganic Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia; (A.Š.); (C.B.)
- Graduate School, University of Nova Gorica, Vipavska 13, SI-5000 Nova Gorica, Slovenia
| |
Collapse
|
23
|
Zhu Y, Gu J, Yu X, Zhang B, Li G, Li J, Liu Y. The multifunctional design of metal–organic framework by applying linker desymmetrization strategy: synergistic catalysis for high CO 2-epoxide conversion. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00960e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A novel copper-organic framework was synthesized by a linker desymmetrization strategy. Synergistic catalysis with Lewis and Brønsted acid sites promoted a high catalytic efficiency towards the CO2-propylene oxide cycloaddition reaction.
Collapse
Affiliation(s)
- Yueying Zhu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Jiaming Gu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xueyue Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Borong Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Guanghua Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Jiantang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yunling Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
24
|
Sirijaraensre J. Structures and mechanisms of CO 2 cycloaddition with styrene oxide on bimetallic M–Cu–BTC MOFs (M = Mg, Ca, Al, and Ga): a DFT study. NEW J CHEM 2021. [DOI: 10.1039/d0nj05343k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Al–Cu–BTC catalyst having the strongest interaction with the SO molecule is the most promising catalyst for the conversion of CO2 to cyclic carbonate.
Collapse
|
25
|
Zhou Y, Avila J, Berthet N, Legrand S, Santini CC, Costa Gomes M, Dufaud V. Integrated, one-pot carbon capture and utilisation using porous ionic liquids. Chem Commun (Camb) 2021; 57:7922-7925. [PMID: 34286748 DOI: 10.1039/d1cc02642a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Porous ionic liquids combining alkylphosphonium halides with ZIF-8 absorb large amounts of carbon dioxide that can be catalytically coupled with epoxides to form cyclic carbonates. High activity and selectivity under mild reaction conditions points towards a new promising, high-performing, sustainable family of sorbents for simultaneous carbon capture and transformation.
Collapse
Affiliation(s)
- Yujiao Zhou
- University of Lyon, CPE Lyon, CNRS, UMR 5128, Catalysis, Polymerization, Processes and Materials (CP2M), 43 Bvd. du 11 Novembre 1918, F-69616 Villeurbanne, France. and Laboratoire de Chimie de l'ENS Lyon, CNRS and Université de Lyon, 46 allée dItalie, 69364 Lyon, France.
| | - Jocasta Avila
- Laboratoire de Chimie de l'ENS Lyon, CNRS and Université de Lyon, 46 allée dItalie, 69364 Lyon, France.
| | - Nicolas Berthet
- University of Lyon, CPE Lyon, CNRS, UMR 5128, Catalysis, Polymerization, Processes and Materials (CP2M), 43 Bvd. du 11 Novembre 1918, F-69616 Villeurbanne, France.
| | - Solène Legrand
- University of Lyon, CPE Lyon, CNRS, UMR 5128, Catalysis, Polymerization, Processes and Materials (CP2M), 43 Bvd. du 11 Novembre 1918, F-69616 Villeurbanne, France. and Laboratoire de Chimie de l'ENS Lyon, CNRS and Université de Lyon, 46 allée dItalie, 69364 Lyon, France.
| | - Catherine C Santini
- University of Lyon, CPE Lyon, CNRS, UMR 5128, Catalysis, Polymerization, Processes and Materials (CP2M), 43 Bvd. du 11 Novembre 1918, F-69616 Villeurbanne, France.
| | - Margarida Costa Gomes
- Laboratoire de Chimie de l'ENS Lyon, CNRS and Université de Lyon, 46 allée dItalie, 69364 Lyon, France.
| | - Véronique Dufaud
- University of Lyon, CPE Lyon, CNRS, UMR 5128, Catalysis, Polymerization, Processes and Materials (CP2M), 43 Bvd. du 11 Novembre 1918, F-69616 Villeurbanne, France.
| |
Collapse
|
26
|
Hadjiivanov KI, Panayotov DA, Mihaylov MY, Ivanova EZ, Chakarova KK, Andonova SM, Drenchev NL. Power of Infrared and Raman Spectroscopies to Characterize Metal-Organic Frameworks and Investigate Their Interaction with Guest Molecules. Chem Rev 2020; 121:1286-1424. [DOI: 10.1021/acs.chemrev.0c00487] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Dimitar A. Panayotov
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Mihail Y. Mihaylov
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Elena Z. Ivanova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Kristina K. Chakarova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Stanislava M. Andonova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Nikola L. Drenchev
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| |
Collapse
|
27
|
Wang Y, Chen L, Hou CC, Wei YS, Xu Q. Multiple catalytic sites in MOF-based hybrid catalysts for organic reactions. Org Biomol Chem 2020; 18:8508-8525. [PMID: 33043331 DOI: 10.1039/d0ob01729a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hybrid catalysis provides an effective pathway to improve the catalytic efficiency and simplify the synthesis operation, but multiple catalytic sites are required. Catalysts with multiple functions based on/derived from metal-organic frameworks (MOFs) have received growing attention in organic synthesis due to their wide variety and outstanding designability. This review provides an overview of significant advances in the field of organic reactions by MOF-based hybrid catalysts with emphasis on multiple catalytic sites and their synergies, including inherent sites on host frameworks, sites of MOF composites and metal sites in/on MOF-derived hybrid catalysts.
Collapse
Affiliation(s)
- Yu Wang
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Sakyo-ku, Kyoto 606-8501, Japan.
| | - Liyu Chen
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Sakyo-ku, Kyoto 606-8501, Japan.
| | - Chun-Chao Hou
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Sakyo-ku, Kyoto 606-8501, Japan.
| | - Yong-Sheng Wei
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Sakyo-ku, Kyoto 606-8501, Japan.
| | - Qiang Xu
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Sakyo-ku, Kyoto 606-8501, Japan. and School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| |
Collapse
|
28
|
Sun L, Luo J, Gao M, Tang S. Bi-functionalized ionic liquid porous copolymers for CO2 adsorption and conversion under ambient pressure. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104636] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Tang B, Li S, Song WC, Li Y, Yang EC, Zhao XJ, Li L. Hollow Zn-Co Based Zeolitic Imidazole Framework as a Robust Heterogeneous Catalyst for Enhanced CO 2 Chemical Fixation. Chem Asian J 2019; 14:4375-4382. [PMID: 31651104 DOI: 10.1002/asia.201901246] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/24/2019] [Indexed: 11/12/2022]
Abstract
The efficient chemical conversion of carbon dioxide (CO2 ) into value-added fine chemicals is an intriguing but challenging route in sustainable chemistry. Herein, a hollow-structured bimetallic zeolitic imidazole framework composed of Zn and Co as metal centers (H-ZnCo-ZIF) has been successfully prepared via a post-synthetic strategy based on controllable chemical-etching of the preformed solid ZnCo-ZIF in tannic acid. The creation of hollow cavities inside each monocrystalline ZIFs could be achieved without destroying the intrinsic frameworks, as characterized by field-emission scanning electron microscopy, transmission electron microscopy, and X-ray diffraction technologies. The as-synthesized H-ZnCo-ZIF exhibited remarkable catalytic activity in the cycloaddition of CO2 with epoxides to the corresponding cyclic carbonates, outperforming the solid ZnCo-ZIF analogue due to the improved mass transfer originating from the hollow structure. More importantly, due to stabilization of metal centers in the ZIF framework by the tannic acid shell, H-ZnCo-ZIF exhibited good recyclability, and no activity loss could be observed in six runs. The present study provides a simple and effective strategy to enhance the catalytic performance of ZIFs by creating a hollow structure via chemical etching.
Collapse
Affiliation(s)
- Bo Tang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education & Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin, 300387, China
| | - Shuang Li
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education & Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin, 300387, China
| | - Wei-Chao Song
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education & Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin, 300387, China
| | - Yan Li
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education & Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin, 300387, China
| | - En-Cui Yang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education & Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin, 300387, China
| | - Xiao-Jun Zhao
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education & Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin, 300387, China
| | - Landong Li
- School of Materials Science and Engineering & National Institute for, Advanced Materials, Nankai University, Tianjin, 300350, China
| |
Collapse
|
30
|
Chen S, Pudukudy M, Yue Z, Zhang H, Zhi Y, Ni Y, Shan S, Jia Q. Nonmetal Schiff-Base Complex-Anchored Cellulose as a Novel and Reusable Catalyst for the Solvent-Free Ring-Opening Addition of CO2 with Epoxides. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03331] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shiyu Chen
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Manoj Pudukudy
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Zhongxiao Yue
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Heng Zhang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yunfei Zhi
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yonghao Ni
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Limerick Pulp and Paper Centre, University of New Brunswick, Fredericton E3B 5A3, Canada
| | - Shaoyun Shan
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Qingming Jia
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| |
Collapse
|