1
|
Salichon A, Salcedo A, Michel C, Loffreda D. Theoretical study of structure sensitivity on ceria-supported single platinum atoms and its influence on carbon monoxide adsorption. J Comput Chem 2024; 45:2167-2179. [PMID: 38795373 DOI: 10.1002/jcc.27393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/27/2024] [Accepted: 04/29/2024] [Indexed: 05/27/2024]
Abstract
Density functional theory (DFT) calculations explore the stability of a single platinum atom on various flat, stepped, and defective ceria surfaces, in the context of single-atom catalysts (SACs) for the water-gas shift (WGS) reaction. The adsorption properties and diffusion kinetics of the metal strongly depend on the support termination with large stability on metastable and stepped CeO2(100) and (210) surfaces where the diffusion of the platinum atom is hindered. At the opposite, the more stable CeO2(111) and (110) terminations weakly bind the platinum atom and can promote the growth of metallic clusters thanks to fast diffusion kinetics. The adsorption of carbon monoxide on the single platinum atom supported on the various ceria terminations is also sensitive to the surface structure. Carbon monoxide weakly binds to the single platinum atom supported on reduced CeO2(111) and (211) terminations. The desorption of the CO2 formed during the WGS reaction is thus facilitated on the latter terminations. A vibrational analysis underlines the significant changes in the calculated scaled anharmonic CO stretching frequency on these catalysts.
Collapse
Affiliation(s)
| | - Agustin Salcedo
- ENSL, CNRS, Laboratoire de Chimie UMR 5182, Lyon Cedex, France
| | - Carine Michel
- ENSL, CNRS, Laboratoire de Chimie UMR 5182, Lyon Cedex, France
| | - David Loffreda
- ENSL, CNRS, Laboratoire de Chimie UMR 5182, Lyon Cedex, France
| |
Collapse
|
2
|
Cholach A. Catalytic activity of γ-Al 2O 3(110) in the NO + H 2 reaction: a DFT study. Phys Chem Chem Phys 2023; 25:24686-24695. [PMID: 37668017 DOI: 10.1039/d3cp02909c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
In this work, the interaction of the surface of γ-Al2O3(110) with NO and H2 was studied using density functional theory calculations. Free γ-Al2O3(110) adsorbs NO and binds H atoms, but repels the H2 molecule. A triplet of low-coordinated OII-AlIII-OII atoms provides the catalytic activity of γ-Al2O3(110) along the path: (i) the adsorption of NO/AlIII is followed by the binding of H2 to form a hydroxylamine derivative NHOH through an intermediate NO/AlIII + 2 × H/OII complex; (ii) recombination of NHOH with the release of N2 through an intermediate NHOH/AlIII + NHOH/AlIV or adsorption of NO followed by the release of N2O through the intermediate NHOH/AlIII + NO/AlIV; the pathway ends with the regeneration of γ-Al2O3(110). The calculated adsorption heats ensure the diffusion of H atoms from the deposited Pt to the surface (110), initiating the formation of the NH2/AlIII + H/OII complex, which releases NH3 endothermically and is stable enough to inhibit stage (ii) of the above reaction pathway. An excess of O2 in the NO + H2 mixture excludes H/Pt and eliminates inhibition. The formation of oxynitrides is suppressed, but not excluded by more exothermic surface processes. The N-doped conductivity of bulk and surface oxynitrides Al32O47N and the dependence of the heat of adsorption of H atoms on the band gap width were revealed, which suggests a relationship between the band gap width and catalytic activity.
Collapse
Affiliation(s)
- Alexander Cholach
- Boreskov Institute of Catalysis, Akademik Lavrentiev Ave 5, Russian Federation.
| |
Collapse
|
3
|
Hu P, Wang S, Zhuo Y. Arsenic adsorption enhancement performances of Mn-modified γ-Al 2O 3 with flue gas constituents involved. CHEMOSPHERE 2022; 288:132653. [PMID: 34715099 DOI: 10.1016/j.chemosphere.2021.132653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/17/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Some flue gas constituents have negative effects on As2O3 adsorption of γ-Al2O3 so promoting arsenic adsorption performances under complicated flue gas conditions is necessary based on previous studies. In this study, γ-Al2O3 is modified with manganous nitrate and then Mn-modified γ-Al2O3 is used as the adsorbents in experiments. Besides, molecular dynamics (MD) simulations and density functional theory (DFT) calculations are performed to explore mechanisms of how loadings of Mn enhance arsenic adsorption features of γ-Al2O3 when being affected by flue gas constituents in microscale and mesoscale, respectively. As for DFT calculations, it is uncovered that electron transfer/interaction among As2O3, flue gas constituents and Mn-modified γ-Al2O3 mostly influences arsenic adsorption. For MD simulations, it is expounded that the collision and aggregation of As2O3 and flue gas constituent molecules have most impact on arsenic adsorption. As far as experiments are concerned, they are conducted to show the macroscopic characterizations of arsenic adsorption performances, corresponding to results of DFT calculations and MD simulations. The understanding of these three different aspects could supply significant references for utilization of Mn-modified γ-Al2O3 in real industries to remove arsenic under complex flue gas conditions.
Collapse
Affiliation(s)
- Pengbo Hu
- Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, PR China; Key Laboratory of Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing, 100084, PR China
| | - Shujuan Wang
- Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, PR China; Key Laboratory of Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing, 100084, PR China; Engineering Research Center for Ecological Restoration and Carbon Fixation of Saline-Alkaline and Desert Land, Tsinghua University, Beijing, 100084, PR China
| | - Yuqun Zhuo
- Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, PR China; Key Laboratory of Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing, 100084, PR China; Engineering Research Center for Ecological Restoration and Carbon Fixation of Saline-Alkaline and Desert Land, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
4
|
Wang G, Jing Y, Ting KW, Maeno Z, Zhang X, Nagaoka S, Shimizu KI, Toyao T. Effect of oxygen storage materials on the performance of Pt-based three-way catalysts. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00469k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pt supported on oxygen storage materials (CeO2 and CeO2–ZrO2) as effective three-way catalysts.
Collapse
Affiliation(s)
- Gang Wang
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Yuan Jing
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Kah Wei Ting
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Zen Maeno
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Xiaorui Zhang
- Johnson Matthey Japan G.K., 5123-3, Kitsuregawa, Sakura, Tochigi 329-1412, Japan
| | - Shuhei Nagaoka
- Johnson Matthey Japan G.K., 5123-3, Kitsuregawa, Sakura, Tochigi 329-1412, Japan
| | - Ken-ichi Shimizu
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| | - Takashi Toyao
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
5
|
|
6
|
Sangnier A, Genty E, Iachella M, Sautet P, Raybaud P, Matrat M, Dujardin C, Chizallet C. Thermokinetic and Spectroscopic Mapping of Carbon Monoxide Adsorption on Highly Dispersed Pt/γ-Al 2O 3. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alexis Sangnier
- IFP Energies Nouvelles, Institut Carnot IFPEN Transports Energies, 1 et 4 avenue de Bois-Préau, 92852 Rueil-Malmaison Cedex, France
- IFP Energies Nouvelles, Rond-Point de l’Echangeur de Solaize, BP 3, 69360 Solaize, France
| | - Eric Genty
- Univ. Lille, Centrale Lille, CNRS, Univ. Artois, UMR 8181, UCCS, Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Mathilde Iachella
- Université de Lyon, CNRS, Laboratoire de Chimie, Ecole Normale Supérieure de Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France
| | - Philippe Sautet
- Université de Lyon, CNRS, Laboratoire de Chimie, Ecole Normale Supérieure de Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France
- Chemical and Biomolecular Engineering Department, Chemistry and Biochemistry Department and CNSI, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Pascal Raybaud
- IFP Energies Nouvelles, Rond-Point de l’Echangeur de Solaize, BP 3, 69360 Solaize, France
| | - Mickaël Matrat
- IFP Energies Nouvelles, Institut Carnot IFPEN Transports Energies, 1 et 4 avenue de Bois-Préau, 92852 Rueil-Malmaison Cedex, France
| | - Christophe Dujardin
- Univ. Lille, Centrale Lille, CNRS, Univ. Artois, UMR 8181, UCCS, Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Céline Chizallet
- IFP Energies Nouvelles, Rond-Point de l’Echangeur de Solaize, BP 3, 69360 Solaize, France
| |
Collapse
|
7
|
Yao Z, Zhao J, Zhao C, Deng S, Zhuang G, Zhong X, Wei Z, Li Y, Wang S, Wang J. A first-principles study of reaction mechanism over carbon decorated oxygen-deficient TiO2 supported Pd catalyst in direct synthesis of H2O2. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.11.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|