1
|
Crossley-Lewis J, Dunn J, Hickman IF, Jackson F, Sunley GJ, Buda C, Mulholland AJ, Allan NL. Multilevel quantum mechanical calculations show the role of promoter molecules in the dehydration of methanol to dimethyl ether in H-ZSM-5. Phys Chem Chem Phys 2024; 26:16693-16707. [PMID: 38809246 DOI: 10.1039/d3cp05987a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Methyl carboxylate esters promote the formation of dimethyl ether (DME) from the dehydration of methanol in H-ZSM-5 zeolite. We employ a multilevel quantum method to explore the possible associative and dissociative mechanisms in the presence, and absence, of six methyl ester promoters. This hybrid method combines density functional theory, with dispersion corrections (DFT-D3), for the full periodic system, with second-order Møller-Plesset perturbation theory (MP2) for small clusters representing the reaction site, and coupled cluster with single, double, and perturbative triple substitution (CCSD(T)) for the reacting molecules. The calculated adsorption enthalpy of methanol, and reaction enthalpies of the dehydration of methanol to DME within H-ZSM-5, agree with experiment to within chemical accuracy (∼4 kJ mol-1). For the promoters, a reaction pathway via an associative mechanism gives lower overall reaction enthalpies and barriers compared to the reaction with methanol only. Each stage of this mechanism is explored and related to experimental data. We provide evidence that suggests the promoter's adsorption to the Brønsted acid site is the most important factor dictating its efficiency.
Collapse
Affiliation(s)
- Joe Crossley-Lewis
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - Josh Dunn
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - Isabel F Hickman
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - Fiona Jackson
- Applied Sciences, bp Innovation and Engineering, BP plc, Saltend, Hull, HU12 8DS, UK
| | - Glenn J Sunley
- Applied Sciences, bp Innovation and Engineering, BP plc, Saltend, Hull, HU12 8DS, UK
| | - Corneliu Buda
- Applied Sciences, bp Innovation and Engineering, BP plc, 30 South Wacker Drive, Chicago, IL 60606, USA
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - Neil L Allan
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| |
Collapse
|
2
|
Investigating the Interaction between Methanol and the Heulandite-type Zeolite using First Principle Molecular Dynamic. BULLETIN OF CHEMICAL REACTION ENGINEERING & CATALYSIS 2022. [DOI: 10.9767/bcrec.17.3.15169.542-553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The interaction between methanol and the Heulandite-type zeolite has been unveiled to give an atomic scale detail regarding the catalytic activity of this zeolite for methanol conversion. The study was carried out by first principle molecular dynamics to get an insight into the structure and electronic behaviour of methanol inside the zeolite structure at different temperatures. The behaviour of methanol was studied when the location of the proton of Bronsted acid sites was varied to give both possible direct and less interaction with methanol. The results show that methanol interacts with the proton from zeolite to give a cationic species of [CH3OH2]+ both in 300K and 573K conditions. However, when the proton is located at different location far from possible interaction with methanol, the formation of a cationic species is hindered. This study provides an insight into the design of Heulandite type zeolite to give a catalytic activity toward methanol transformation.
Collapse
|
3
|
Banivaheb S, Pitter S, Delgado KH, Rubin M, Sauer J, Dittmeyer R. Recent Progress in Direct DME Synthesis and Potential of Bifunctional Catalysts. CHEM-ING-TECH 2022. [DOI: 10.1002/cite.202100167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Soudeh Banivaheb
- Karlsruhe Institute of Technology Institute for Micro Process Engineering (IMVT) Hermann-von-Helmholtz-Platz 76344 Eggenstein-Leopoldshafen Germany
| | - Stephan Pitter
- Karlsruhe Institute of Technology Institute of Catalysis Research and Technology (IKFT) Hermann-von-Helmholtz-Platz 76344 Eggenstein-Leopoldshafen Germany
| | - Karla Herrera Delgado
- Karlsruhe Institute of Technology Institute of Catalysis Research and Technology (IKFT) Hermann-von-Helmholtz-Platz 76344 Eggenstein-Leopoldshafen Germany
| | - Michael Rubin
- Karlsruhe Institute of Technology Institute for Micro Process Engineering (IMVT) Hermann-von-Helmholtz-Platz 76344 Eggenstein-Leopoldshafen Germany
| | - Jörg Sauer
- Karlsruhe Institute of Technology Institute of Catalysis Research and Technology (IKFT) Hermann-von-Helmholtz-Platz 76344 Eggenstein-Leopoldshafen Germany
| | - Roland Dittmeyer
- Karlsruhe Institute of Technology Institute for Micro Process Engineering (IMVT) Hermann-von-Helmholtz-Platz 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
5
|
Trends and Outlook of Computational Chemistry and Microkinetic Modeling for Catalytic Synthesis of Methanol and DME. Catalysts 2020. [DOI: 10.3390/catal10060655] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The first-principle modeling of heterogeneous catalysts is a revolutionarily approach, as the electronic structure of a catalyst is closely related to its reactivity on the surface with reactant molecules. In the past, detailed reaction mechanisms could not be understood, however, computational chemistry has made it possible to analyze a specific elementary reaction of a reaction system. Microkinetic modeling is a powerful tool for investigating elementary reactions and reaction mechanisms for kinetics. Using a microkinetic model, the dominant pathways and rate-determining steps can be elucidated among the competitive reactions, and the effects of operating conditions on the reaction mechanisms can be determined. Therefore, the combination of computational chemistry and microkinetic modeling can significantly improve computational catalysis research. In this study, we reviewed the trends and outlook of this combination technique as applied to the catalytic synthesis of methanol (MeOH) and dimethyl ether (DME), whose detailed mechanisms are still controversial. Although the scope is limited to the catalytic synthesis of limited species, this study is expected to provide a foundation for future works in the field of catalysis research based on computational catalysis.
Collapse
|