1
|
Wang J, Lu X, Guo M, Zhang R, Xiong J, Qiao Y, Yu Z. Reductive Amination of Levulinic Acid to Pyrrolidones: Key Step in Biomass Valorization towards Nitrogen-Containing Chemicals. CHEMSUSCHEM 2023; 16:e202301091. [PMID: 37656427 DOI: 10.1002/cssc.202301091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/02/2023]
Abstract
Nowadays, the field of biomass conversion is gradually moving towards an encouraging stage. The preparation of nitrogen-containing chemicals using various biomass resources instead of fossil resources do not only reduce carbon emissions, but also diversify the products of biomass conversion, thus increasing the economic competitiveness of biomass refining systems. Levulinic acid (LA) can be used as a promising intermediate in biomass conversion for further synthesis of pyrrolidone via reductive amination. However, there are still many critical issues to be solved. Particularly, the specific effects of catalysts on the performance of LA reductive amination have not been sufficiently revealed, and the potential impacts of key conditional factors have not been clearly elucidated. In view of this, this review attempts to provide theoretical insights through an in-depth interpretation of the above key issues. The contribution of catalysts to the reductive amination of LA as well as the catalyst structural preferences for improving catalytic performance are discussed. In addition, the role of key conditional factors is discussed. The insights presented in this review will contribute to the design of catalyst nanostructures and the rational configuration of green reaction conditions, which may provide inspiration to facilitate the nitrogen-related transformation of more biomass platform molecules.
Collapse
Affiliation(s)
- Jingfei Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Xuebin Lu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
- School of Ecology and Environment, Tibet University, Lhasa, 850000, P. R. China
| | - Mengyan Guo
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Rui Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, P. R. China
| | - Jian Xiong
- School of Ecology and Environment, Tibet University, Lhasa, 850000, P. R. China
| | - Yina Qiao
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, P. R. China
| | - Zhihao Yu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| |
Collapse
|
2
|
Leal Villarroel E, Seguel J, Rodríguez P, Blanco E, Escalona N, Pecchi G, Sepúlveda C. Conversion of Levulinic Acid over Ru/SrZrO
3
and Ru/BaZrO
3
Supported Basic Catalysts. ChemCatChem 2022. [DOI: 10.1002/cctc.202201170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Edgardo Leal Villarroel
- Facultad de Ciencias Químicas Universidad de Concepción Edmundo Larenas 129 Chile
- Millennium Nuclei on Catalytic Process towards Sustainable Chemistry (CSC) Chile
| | - Juan Seguel
- Facultad de Ciencias Químicas Universidad de Concepción Edmundo Larenas 129 Chile
- Millennium Nuclei on Catalytic Process towards Sustainable Chemistry (CSC) Chile
| | - Pedro Rodríguez
- Facultad de Ciencias Químicas Universidad de Concepción Edmundo Larenas 129 Chile
- Millennium Nuclei on Catalytic Process towards Sustainable Chemistry (CSC) Chile
| | - Elodie Blanco
- Millennium Nuclei on Catalytic Process towards Sustainable Chemistry (CSC) Chile
- Departamento de Ingeniería Química y Bioprocesos Escuela de Ingeniería Pontificia Universidad Católica de Chile Chile
| | - Néstor Escalona
- Millennium Nuclei on Catalytic Process towards Sustainable Chemistry (CSC) Chile
- Departamento de Ingeniería Química y Bioprocesos Escuela de Ingeniería Pontificia Universidad Católica de Chile Chile
- Facultad de Química y de Farmacia Pontificia Universidad Católica de Chile Chile
- Unidad de Desarrollo Tecnológico Universidad de Concepción Chile
| | - Gina Pecchi
- Facultad de Ciencias Químicas Universidad de Concepción Edmundo Larenas 129 Chile
- Millennium Nuclei on Catalytic Process towards Sustainable Chemistry (CSC) Chile
| | - Catherine Sepúlveda
- Facultad de Ciencias Químicas Universidad de Concepción Edmundo Larenas 129 Chile
- Millennium Nuclei on Catalytic Process towards Sustainable Chemistry (CSC) Chile
| |
Collapse
|
3
|
Córdova-Pérez GE, Cortez-Elizalde J, Silahua-Pavón AA, Cervantes-Uribe A, Arévalo-Pérez JC, Cordero-Garcia A, de los Monteros AEE, Espinosa-González CG, Godavarthi S, Ortiz-Chi F, Guerra-Que Z, Torres-Torres JG. γ-Valerolactone Production from Levulinic Acid Hydrogenation Using Ni Supported Nanoparticles: Influence of Tungsten Loading and pH of Synthesis. NANOMATERIALS 2022; 12:nano12122017. [PMID: 35745357 PMCID: PMC9228888 DOI: 10.3390/nano12122017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 12/04/2022]
Abstract
γ-Valerolactone (GVL) has been considered an alternative as biofuel in the production of carbon-based chemicals; however, the use of noble metals and corrosive solvents has been a problem. In this work, Ni supported nanocatalysts were prepared to produce γ-Valerolactone from levulinic acid using methanol as solvent at a temperature of 170 °C utilizing 4 MPa of H2. Supports were modified at pH 3 using acetic acid (CH3COOH) and pH 9 using ammonium hydroxide (NH4OH) with different tungsten (W) loadings (1%, 3%, and 5%) by the Sol-gel method. Ni was deposited by the suspension impregnation method. The catalysts were characterized by various techniques including XRD, N2 physisorption, UV-Vis, SEM, TEM, XPS, H2-TPR, and Pyridine FTIR. Based on the study of acidity and activity relation, Ni dispersion due to the Lewis acid sites contributed by W at pH 9, producing nanoparticles smaller than 10 nm of Ni, and could be responsible for the high esterification activity of levulinic acid (LA) to Methyl levulinate being more selective to catalytic hydrogenation. Products and by-products were analyzed by 1H NMR. Optimum catalytic activity was obtained with 5% W at pH 9, with 80% yield after 24 h of reaction. The higher catalytic activity was attributed to the particle size and the amount of Lewis acid sites generated by modifying the pH of synthesis and the amount of W in the support due to the spillover effect.
Collapse
Affiliation(s)
- Gerardo E. Córdova-Pérez
- Laboratorio de Nanomateriales Catalíticos Aplicados al Desarrollo de Fuentes de Energía y Remediación Ambiental, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), DACB, Universidad Juárez Autónoma de Tabasco, Km.1 Carretera Cunduacán-Jalpa de Méndez, Cunduacan CP 86690, Tabasco, Mexico; (G.E.C.-P.); (J.C.-E.); (A.A.S.-P.); (A.C.-U.); (J.C.A.-P.); (A.C.-G.); (A.E.E.d.l.M.)
| | - Jorge Cortez-Elizalde
- Laboratorio de Nanomateriales Catalíticos Aplicados al Desarrollo de Fuentes de Energía y Remediación Ambiental, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), DACB, Universidad Juárez Autónoma de Tabasco, Km.1 Carretera Cunduacán-Jalpa de Méndez, Cunduacan CP 86690, Tabasco, Mexico; (G.E.C.-P.); (J.C.-E.); (A.A.S.-P.); (A.C.-U.); (J.C.A.-P.); (A.C.-G.); (A.E.E.d.l.M.)
| | - Adib Abiu Silahua-Pavón
- Laboratorio de Nanomateriales Catalíticos Aplicados al Desarrollo de Fuentes de Energía y Remediación Ambiental, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), DACB, Universidad Juárez Autónoma de Tabasco, Km.1 Carretera Cunduacán-Jalpa de Méndez, Cunduacan CP 86690, Tabasco, Mexico; (G.E.C.-P.); (J.C.-E.); (A.A.S.-P.); (A.C.-U.); (J.C.A.-P.); (A.C.-G.); (A.E.E.d.l.M.)
| | - Adrián Cervantes-Uribe
- Laboratorio de Nanomateriales Catalíticos Aplicados al Desarrollo de Fuentes de Energía y Remediación Ambiental, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), DACB, Universidad Juárez Autónoma de Tabasco, Km.1 Carretera Cunduacán-Jalpa de Méndez, Cunduacan CP 86690, Tabasco, Mexico; (G.E.C.-P.); (J.C.-E.); (A.A.S.-P.); (A.C.-U.); (J.C.A.-P.); (A.C.-G.); (A.E.E.d.l.M.)
| | - Juan Carlos Arévalo-Pérez
- Laboratorio de Nanomateriales Catalíticos Aplicados al Desarrollo de Fuentes de Energía y Remediación Ambiental, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), DACB, Universidad Juárez Autónoma de Tabasco, Km.1 Carretera Cunduacán-Jalpa de Méndez, Cunduacan CP 86690, Tabasco, Mexico; (G.E.C.-P.); (J.C.-E.); (A.A.S.-P.); (A.C.-U.); (J.C.A.-P.); (A.C.-G.); (A.E.E.d.l.M.)
| | - Adrián Cordero-Garcia
- Laboratorio de Nanomateriales Catalíticos Aplicados al Desarrollo de Fuentes de Energía y Remediación Ambiental, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), DACB, Universidad Juárez Autónoma de Tabasco, Km.1 Carretera Cunduacán-Jalpa de Méndez, Cunduacan CP 86690, Tabasco, Mexico; (G.E.C.-P.); (J.C.-E.); (A.A.S.-P.); (A.C.-U.); (J.C.A.-P.); (A.C.-G.); (A.E.E.d.l.M.)
| | - Alejandra E. Espinosa de los Monteros
- Laboratorio de Nanomateriales Catalíticos Aplicados al Desarrollo de Fuentes de Energía y Remediación Ambiental, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), DACB, Universidad Juárez Autónoma de Tabasco, Km.1 Carretera Cunduacán-Jalpa de Méndez, Cunduacan CP 86690, Tabasco, Mexico; (G.E.C.-P.); (J.C.-E.); (A.A.S.-P.); (A.C.-U.); (J.C.A.-P.); (A.C.-G.); (A.E.E.d.l.M.)
| | - Claudia G. Espinosa-González
- Investigadoras e Investigadores por Mexico, Universidad Juárez Autónoma de Tabasco, División Académica de Ciencias Básicas, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), Km.1 Carretera Cunduacán-Jalpa de Méndez, Cunduacan CP 86690, Tabasco, Mexico; (C.G.E.-G.); (S.G.); (F.O.-C.)
| | - Srinivas Godavarthi
- Investigadoras e Investigadores por Mexico, Universidad Juárez Autónoma de Tabasco, División Académica de Ciencias Básicas, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), Km.1 Carretera Cunduacán-Jalpa de Méndez, Cunduacan CP 86690, Tabasco, Mexico; (C.G.E.-G.); (S.G.); (F.O.-C.)
| | - Filiberto Ortiz-Chi
- Investigadoras e Investigadores por Mexico, Universidad Juárez Autónoma de Tabasco, División Académica de Ciencias Básicas, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), Km.1 Carretera Cunduacán-Jalpa de Méndez, Cunduacan CP 86690, Tabasco, Mexico; (C.G.E.-G.); (S.G.); (F.O.-C.)
| | - Zenaida Guerra-Que
- Tecnológico Nacional de México Campus Villahermosa, Laboratorio de Investigción 1 Área de Nanotecnología, Km. 3.5 Carretera Villahermosa–Frontera, Cd. Industrial, Villahermosa CP 86010, Tabasco, Mexico;
| | - José Gilberto Torres-Torres
- Laboratorio de Nanomateriales Catalíticos Aplicados al Desarrollo de Fuentes de Energía y Remediación Ambiental, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), DACB, Universidad Juárez Autónoma de Tabasco, Km.1 Carretera Cunduacán-Jalpa de Méndez, Cunduacan CP 86690, Tabasco, Mexico; (G.E.C.-P.); (J.C.-E.); (A.A.S.-P.); (A.C.-U.); (J.C.A.-P.); (A.C.-G.); (A.E.E.d.l.M.)
- Correspondence: ; Tel.: +52-191-4336-0300; Fax: +52-191-4336-0928
| |
Collapse
|
4
|
Zeng Y, Wang B, Yan F, Xu W, Bai G, Li Y, Yan X, Chen L. Boron modified Cu/Al2O3 catalysts for the selective reductive amination of levulinic acid to N‐substituted pyrrolidinones. ChemCatChem 2022. [DOI: 10.1002/cctc.202200311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yuyao Zeng
- Tianjin University School of Chemical Engineering And Technology School of Chemical Engineering and Technology CHINA
| | - Bowei Wang
- Tianjin University School of Chemical Engineering And Technology School of Chemical Engineering and Technology CHINA
| | - Fanyong Yan
- Tiangong University Tianjin Key Laboratory of Green Chemical Engineering Process Engineering CHINA
| | - Wensheng Xu
- Tianjin University School of Chemical Engineering And Technology School of Chemical Engineering and Technology CHINA
| | - Guoyi Bai
- Hebei University College of Chemistry and Environmental Science CHINA
| | - Yang Li
- Tianjin University School of Chemical Engineering And Technology School of Chemical Engineering and Technology CHINA
| | - Xilong Yan
- Tianjin University School of Chemical Engineering And Technology School of Chemical Engineering and Technology CHINA
| | - Ligong Chen
- Tianjin University School of Chemical Engineering and Technology Yaguan road 135# 300350 Tianjin CHINA
| |
Collapse
|
5
|
Ru Catalysts Supported on Commercial and Biomass-Derived Activated Carbons for the Transformation of Levulinic Acid into γ-Valerolactone under Mild Conditions. Catalysts 2021. [DOI: 10.3390/catal11050559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Ru catalysts (1 wt.%) supported on commercial and biomass-derived activated carbons (AC) have been prepared, thoroughly characterized, and used in the hydrogenation of levulinic acid to produce gamma-valerolactone (GVL). This is an important platform compound that plays a key role in the production of liquid fuels and that can also be used, for example, as a food flavoring agent, antifreeze, and solvent. The study focuses on the influence of the carbon support characteristics, such as porous texture and acidity, on the properties and performance (LA conversion and selectivity to GVL) of the catalysts. Catalytic activity tests have been carried out at 170 °C and also in noticeably milder conditions (70 °C) to implement a less energy-demanding process. All the catalysts show high LA conversion and GVL yield at 170 °C, while at 70 °C, important differences between them, related to the support properties, have been found. The catalysts prepared with more acidic supports show better catalytic properties: very good catalytic performance (98% LA conversion and 77% selectivity to GVL) has been obtained in mild temperature conditions.
Collapse
|