1
|
Wang Y, Sourav S, Malizia JP, Thompson B, Wang B, Kunz MR, Nikolla E, Fushimi R. Deciphering the Mechanistic Role of Individual Oxide Phases and Their Combinations in Supported Mn–Na 2WO 4 Catalysts for Oxidative Coupling of Methane. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yixiao Wang
- Catalysis and Transient Kinetics Group, Idaho National Laboratory, Idaho Falls, Idaho 83415, United States
| | - Sagar Sourav
- Catalysis and Transient Kinetics Group, Idaho National Laboratory, Idaho Falls, Idaho 83415, United States
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Jason P. Malizia
- Catalysis and Transient Kinetics Group, Idaho National Laboratory, Idaho Falls, Idaho 83415, United States
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Brooklyne Thompson
- Catalysis and Transient Kinetics Group, Idaho National Laboratory, Idaho Falls, Idaho 83415, United States
- Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331, United States
| | - Bingwen Wang
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
| | - M. Ross Kunz
- Catalysis and Transient Kinetics Group, Idaho National Laboratory, Idaho Falls, Idaho 83415, United States
| | - Eranda Nikolla
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Rebecca Fushimi
- Catalysis and Transient Kinetics Group, Idaho National Laboratory, Idaho Falls, Idaho 83415, United States
| |
Collapse
|
2
|
Oxidative coupling of methane-comparisons of MnTiO 3-Na 2WO 4 and MnO x-TiO 2-Na 2WO 4 catalysts on different silica supports. Sci Rep 2022; 12:2595. [PMID: 35173240 PMCID: PMC8850452 DOI: 10.1038/s41598-022-06598-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/21/2022] [Indexed: 11/09/2022] Open
Abstract
The oxidative coupling of methane (OCM) converts CH4 to value-added chemicals (C2+), such as olefins and paraffin. For a series of MnTiO3-Na2WO4 (MnTiO3-NW) and MnOx-TiO2-Na2WO4 (Mn-Ti-NW), the effect of loading of MnTiO3 or MnOx-TiO2, respectively, on two different supports (sol-gel SiO2 (SG) and commercial fumed SiO2 (CS)) was examined. The catalyst with the highest C2+ yield (21.6% with 60.8% C2+ selectivity and 35.6% CH4 conversion) was 10 wt% MnTiO3-NW/SG with an olefins/paraffin ratio of 2.2. The catalyst surfaces with low oxygen-binding energies were associated with high CH4 conversion. Stability tests conducted for over 24 h revealed that SG-supported catalysts were more durable than those on CS because the active phase (especially Na2WO4) was more stable in SG than in CS. With the use of SG, the activity of MnTiO3-NW was not substantially different from that of Mn-Ti-NW, especially at high metal loading.
Collapse
|
3
|
Jaroenpanon K, Tiyatha W, Chukeaw T, Sringam S, Witoon T, Wattanakit C, Chareonpanich M, Faungnawakij K, Seubsai A. Synthesis of Na2WO4-MnxOy supported on SiO2 or La2O3 as fiber catalysts by electrospinning for oxidative coupling of methane. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
4
|
Kiatsaengthong D, Jaroenpanon K, Somchuea P, Chukeaw T, Chareonpanich M, Faungnawakij K, Sohn H, Rupprechter G, Seubsai A. Effects of Mg, Ca, Sr, and Ba Dopants on the Performance of La 2O 3 Catalysts for the Oxidative Coupling of Methane. ACS OMEGA 2022; 7:1785-1793. [PMID: 35071872 PMCID: PMC8771708 DOI: 10.1021/acsomega.1c04738] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Oxidative coupling of methane (OCM) is a reaction to directly convert methane into high value-added hydrocarbons (C2+) such as ethylene and ethane using molecular oxygen and a catalyst. This work investigated lanthanum oxide catalysts for OCM, which were promoted with alkaline-earth metal oxides (Mg, Ca, Sr, and Ba) and prepared by the solution-mixing method. The synthesized catalysts were characterized using X-ray powder diffraction, CO2-programmed desorption, and X-ray photoelectron spectroscopy. The comparative performance of each promoter showed that promising lanthanum-loaded alkaline-earth metal oxide catalysts were La-Sr and La-Ba. In contrast, the combination of La with Ca or Mg did not lead to a clear improvement of C2+ yield. The most promising LaSr50 catalyst exhibited the highest C2+ yield of 17.2%, with a 56.0% C2+ selectivity and a 30.9% CH4 conversion. Catalyst characterization indicated that their activity was strongly associated with moderate basic sites and surface-adsorbed oxygen species of O2 -. Moreover, the catalyst was stable over 25 h at a reactor temperature of 700 °C.
Collapse
Affiliation(s)
- Danusorn Kiatsaengthong
- Department
of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand
| | - Kanticha Jaroenpanon
- Department
of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand
| | - Pooripong Somchuea
- Department
of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand
| | - Thanaphat Chukeaw
- Department
of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand
- Center
of Excellence on Petrochemical and Materials Technology, Kasetsart University, Bangkok 10900, Thailand
| | - Metta Chareonpanich
- Department
of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand
- Center
of Excellence on Petrochemical and Materials Technology, Kasetsart University, Bangkok 10900, Thailand
- Research
Network of NANOTEC−KU on NanoCatalysts and NanoMaterials for
Sustainable Energy and Environment, Kasetsart
University, Bangkok 10900, Thailand
| | - Kajornsak Faungnawakij
- National
Nanotechnology Center (NANOTEC), National
Science and Technology Development Agency, Thailand Science Park, Khlong
Luang, Pathum Thani 12120, Thailand
| | - Hiesang Sohn
- Department
of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea
| | | | - Anusorn Seubsai
- Department
of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand
- Center
of Excellence on Petrochemical and Materials Technology, Kasetsart University, Bangkok 10900, Thailand
- Research
Network of NANOTEC−KU on NanoCatalysts and NanoMaterials for
Sustainable Energy and Environment, Kasetsart
University, Bangkok 10900, Thailand
| |
Collapse
|