1
|
Zou C, Chen W, Li H, Yao Y, Gao L, Huo J, Jia L. Acid etching-induced nanocutting of LaNiO 3 transplanting self-assembled photodiode array-like LaNiO 3/N,P-RGO nanoreactor for efficient photocatalytic hydrogen evolution. J Colloid Interface Sci 2024; 669:679-687. [PMID: 38733879 DOI: 10.1016/j.jcis.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
Nanoscale graphene-semiconductor composite photocatalysts with fascinating properties in the photocatalytic hydrogen evolution have inspired numerous interests in broad research fields. The architectures with efficient light response and promoting charge separation at the interface between reduced graphene oxide (RGO) and semiconductor are critical, yet synthesizing them remains a formidable challenge. Herein, the photodiode array-like LaNiO3/N,P-RGO (LNO/N,P-RGO) nanoreactor was constructed using an innovative strategy of acid etching-induced nanocutting self-assembly. Ammonium dihydrogen phosphate working as both a nitrogen phosphorus co-dopant and an acid etching reagent, cuts perovskite LaNiO3 (LNO) nanoparticles into nanorods, which are bonded evenly on the nitrogen phosphorus co-doped reduced graphene oxide (N,P-RGO) to form an n-n semiconductor heterojunction LNO/N,P-RGO as a photodiode array-like nanoreactor via hydrothermal treatment. The photodiode array-like nanostructure exposes more active sites that are conducive to light absorption. The robust Ni-C and P-O bonds promote the narrowing of space-charge region at the interface by UV irradiation, thereby improving the transport of photogenerated carriers by visible light irradiation. The LNO/N,P-RGO nanoreactor exhibits excellent photocatalytic hydrogen evolution performance with a yield of up to 354 μmol g-1 h-1 under UV-visible light, which is 50 times higher than that of pure perovskite LNO, and it also displays favorable recycling stability.
Collapse
Affiliation(s)
- Chunxiao Zou
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Wenbin Chen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Huan Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yue Yao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Le Gao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Jiaqi Huo
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Lishan Jia
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China.
| |
Collapse
|
2
|
Guo L, You S, Wu C, Liu F, Zhang R, Wang X. Interconnected Periodic Macroporous NaNbO 3 for High-Efficiency Solar-Driven Photocatalytic Hydrogen Evolution. Inorg Chem 2024; 63:11832-11841. [PMID: 38847596 DOI: 10.1021/acs.inorgchem.4c01632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Highly ordered periodic macroporous structures have been extensively utilized to significantly enhance the photocatalytic activity. However, constructing 3D interconnected ordered porous ternary nanostructures with highly crystalline frameworks remains a formidable challenge. Here, we introduce the design and fabrication of 3D interconnected periodic macroporous NaNbO3 (PM NaNbO3) to effectively increase the density of surface-active sites and optimize the photogenerated carrier-transfer efficiency. By incorporating Pt as a cocatalyst, PM NaNbO3 exhibits an exceptional photocatalytic hydrogen generation rate of 10.04 mmol h-1 g-1, which is approximately six and five times higher than those of calcined NaNbO3 (C-NaNbO3) and hydrothermal NaNbO3 (H-NaNbO3), respectively. This outstanding performance can be attributed to the synergistic effects arising from its well-interconnected pore architecture, large surface area, enhanced light absorption capability, and improved charge carrier separation and transport efficiency. The findings presented in this study demonstrate an innovative approach toward designing hierarchically periodic macroporous materials for solar-driven hydrogen production.
Collapse
Affiliation(s)
- Lang Guo
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, the School of Chemistry and Chemical Engineering, Nanchang University, 999 Xuefu Road, Nanchang 330031, China
| | - Shaoqiang You
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, the School of Chemistry and Chemical Engineering, Nanchang University, 999 Xuefu Road, Nanchang 330031, China
| | - Chunmei Wu
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, the School of Chemistry and Chemical Engineering, Nanchang University, 999 Xuefu Road, Nanchang 330031, China
| | - Feng Liu
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, the School of Chemistry and Chemical Engineering, Nanchang University, 999 Xuefu Road, Nanchang 330031, China
| | - Rongbin Zhang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, the School of Chemistry and Chemical Engineering, Nanchang University, 999 Xuefu Road, Nanchang 330031, China
| | - Xuewen Wang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, the School of Chemistry and Chemical Engineering, Nanchang University, 999 Xuefu Road, Nanchang 330031, China
| |
Collapse
|
3
|
TiO2-reduced graphene oxide-Pt nanocomposites for the photogeneration of hydrogen from ethanol liquid and gas phases. Catal Today 2021. [DOI: 10.1016/j.cattod.2021.05.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Spectroscopic Analyses of Changes in Photocatalytic and Catalytic Activities of Mn- and Ni-Ion Doped and Base-Treated Reduced Graphene Oxide. Catalysts 2021. [DOI: 10.3390/catal11080990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
While reduced graphene oxide (rGO) is used widely as a catalyst, its catalytic activity can be improved significantly by modifying it with a metal. In this study, we compared the photocatalytic and catalytic properties of base-treated rGO particles and transition-metal-ion-doped rGO based on the oxidation reaction of thiophenol and the photocatalytic degradation of 4-chlorophenol. Since the two catalytic activities are related to the changes in the electronic structure of rGO, X-ray photoemission spectroscopy, X-ray absorption spectroscopy, and Raman spectroscopy were performed. When rGO was doped with Mn2+ ions, its catalytic properties improved with respect to both reactions. The changes in the electronic structure of rGO are attributed to the formation of defect structures on the rGO surface via a reaction between the doped Mn2+ ions and oxygen of the rGO surface. Thus, the results show that the doping of rGO with Mn ions in the +2-charge state (stable oxide form: MnO) enhances its catalytic and photocatalytic activities. Hence, this study provides new insights into the use of defect-controlled rGO as a novel catalyst.
Collapse
|