1
|
Moreira Neto J, Costa JM, Bonomi A, Costa AC. A Novel Kinetic Modeling of Enzymatic Hydrolysis of Sugarcane Bagasse Pretreated by Hydrothermal and Organosolv Processes. Molecules 2023; 28:5617. [PMID: 37513489 PMCID: PMC10386732 DOI: 10.3390/molecules28145617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Lignocellulosic biomasses have a complex and compact structure, requiring physical and/or chemical pretreatments to produce glucose before hydrolysis. Mathematical modeling of enzymatic hydrolysis highlights the interactions between cellulases and cellulose, evaluating the factors contributing to reactor scale-up and conversion rates. Furthermore, this study evaluated the influence of two pretreatments (hydrothermal and organosolv) on the kinetics of enzymatic hydrolysis of sugarcane bagasse. The kinetic parameters of the model were estimated using the Pikaia genetic algorithm with data from the experimental profiles of cellulose, cellobiose, glucose, and xylose. The model considered the phenomenon of non-productive adsorption of cellulase on lignin and inhibition of cellulase by xylose. Moreover, it included the behavior of cellulase adsorption on the substrate throughout hydrolysis and kinetic equations for obtaining xylose from xylanase-catalyzed hydrolysis of xylan. The model for both pretreatments was experimentally validated with bagasse concentration at 10% w/v. The Plackett-Burman design identified 17 kinetic parameters as significant in the behavior of process variables. In this way, the modeling and parameter estimation methodology obtained a good fit from the experimental data and a more comprehensive model.
Collapse
Affiliation(s)
- João Moreira Neto
- Department of Engineering, Federal University of Lavras, Lavras 37200-000, MG, Brazil
| | - Josiel Martins Costa
- School of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil
| | - Antonio Bonomi
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, SP, Brazil
| | - Aline Carvalho Costa
- Laboratory of Fermentative and Enzymatic Process Engineering, School of Chemical Engineering, University of Campinas, Campinas 13083-852, SP, Brazil
| |
Collapse
|
2
|
Song X, Jo C, Zhou M. Enhanced tetracycline removal using membrane-like air-cathode with high flux and anti-fouling performance in flow-through electro-filtration system. WATER RESEARCH 2022; 224:119057. [PMID: 36096029 DOI: 10.1016/j.watres.2022.119057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/18/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
The membrane-like air-cathodes modified with different polyaniline were prepared using phase inversion method, which possessed dual functions of interception and electrochemical degradation, and showed good conductivity (15.9 ± 0.4 to 25.7 ± 0.5 mS cm-1) and porosity (77.0 ± 0.1 to 87.8 ± 0.1%) compared to the unmodified control one (13.2 ± 0.5 mS cm-1, and 63.1 ± 0.7%). At tetracycline 50 mg L-1, the cathode with 25 wt% polyaniline exhibited the highest rejection rate and final removal (71.1% and 92.9%, 35.9% and 31.4% higher than the control), the highest water flux recovery (97.9%), and the lowest attenuation of porosity and conductivity. The modified cathode also showed an autocatalytic effect on H2O2, an obvious ·OH peak appeared on the electron paramagnetic resonance curves. It also had good anti-fouling performance because it exhibited a high durability (the final removal was decreased by 4.0% after 15 cycles) with a long service life of 124 periods (372 h, 15.5 d). The tetracycline (0.5 mg L-1) removal in the river background was near 100%, and the chemical oxygen demand removal was 91.9%, supporting that it was suitable for treating antibiotics in natural water without adding agents but only for electricity consumption.
Collapse
Affiliation(s)
- Xiangru Song
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - ChungHyok Jo
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Institute of Nano Science and Physical Engineering, Kim Chaek University of Technology, Pyongyang, Democratic People's Republic of Korea
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|