Maurya MR, Nandi M, Kumar N, Avecilla F. Polymer Supported Nitrogen-Bridged Symmetrical Binuclear Dioxidomolybdenum(VI) Complexes and Their Homogeneous Analogues as Potential Catalysts for Efficient Synthesis of 2-Amino-3-Cyano-4H-Chromenes/Pyrans.
Chemistry 2024;
30:e202400631. [PMID:
38491788 DOI:
10.1002/chem.202400631]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/18/2024]
Abstract
Reaction of 2-chloromethyl-1H-benzimidazole with known intermediates (i-iii), prepared from diaminoguanidine hydrochloride with salicylaldehyde, 5-bromosalicylaldehyde or 3,5-di-tert-butylsalicylaldehyde, in the presence of triethylamine (NEt3) led to the formation of benzimidazole appended new ligands, H4L1-H4L3 (I-III). The homogeneous nitrogen-bridged symmetrical binuclear complexes, [(MoVIO2)2(L1)(H2O)2] (1), [(MoVIO2)2(L2)(H2O)2] (2) and [(MoVIO2)2(L3)(MeOH)2] (3) have been isolated by reacting these ligands with [MoVIO2(acac)2] in a 1 : 2 molar ratio in refluxing methanol. Using 1 : 1 (ligand to Mo precursor) molar ratio under above reaction conditions resulted in the corresponding mononuclear complexes, [MoVIO2(H2L1)(MeOH)] (4), [MoVIO2(H2L2)(H2O)] (5) and [MoVIO2(H2L3)(MeOH)] (6). The binuclear heterogeneous compounds [(MoVIO2)2(L1)(DMF)2]@PS (PS-1), [(MoVIO2)2(L2)(DMF)2]@PS (PS-2) and [(MoVIO2)2(L3)(DMF)2]@PS (PS-3) have been obtained by immobilization of 1-3 onto chloromethylated polystyrene (PS) beads. All synthesized ligands, homogeneous as well as supported compounds have been characterized by elemental analyses and various spectroscopic methods. Single crystal X-ray diffraction study of complexes 1 and 3 confirms their nitrogen-bridged symmetrical binuclear structures while 4 is mononuclear. Heterogeneous compounds (PS-1-PS-3) have further been studied by microwave plasma atomic emission spectroscopy, X-ray photoelectron spectroscopy, and field emission scanning electron microscopy along with energy dispersive spectroscopy. These compounds (homogeneous and heterogeneous) were explored for catalytic applications to one-pot multicomponent reactions (MCRs) for efficient synthesis of biologically active 2-amino-3-cyano-4H-chromenes/pyrans (21 examples). Optimising various reaction parameters helped in achieving as high as 97 % yields of products. Though, only half equivalent of the binuclear complexes (1-3) was required compared to mononuclear analogues (4-6) to achieve comparable yields, heterogeneous catalysts have an added advantage due to their stability and recyclability. Suitable reaction mechanism has also been proposed based on isolated intermediates.
Collapse