Shao YR, Zhou L, Yu L, Li ZF, Li YT, Li W, Hu TL. In Situ Construction of a Co/ZnO@C Heterojunction Catalyst for Efficient Hydrogenation of Biomass Derivative under Mild Conditions.
ACS APPLIED MATERIALS & INTERFACES 2022;
14:17195-17207. [PMID:
35384659 DOI:
10.1021/acsami.1c25097]
[Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The efficient hydrogenation of biomass-derived levulinic acid (LA) to value-added γ-valerolactone (GVL) based on nonprecious metal catalysts under mild conditions is crucial challenge because of the intrinsic inactivity and instability of these catalysts. Herein, a series of highly active and stable carbon-encapsulated Co/ZnO@C-X (where X = 0.1, 0.3, 0.5, the molar ratios of Zn/(Co+Zn)) heterojunction catalysts were obtained by in situ pyrolysis of bimetal CoZn MOF-74. The optimal Co/ZnO@C-0.3 catalyst could achieve 100% conversion of LA and 98.35% selectivity to GVL under mild conditions (100 °C, 5 bar, 3 h), which outperformed most of the state-of-the-art catalysts reported so far. Detailed characterizations, experimental investigations, and theoretical calculations revealed that the interfacial interaction between Co and ZnO nanoparticles (NPs) could promote the dispersibility and air stability of the active Co0 for the activation of H2. Moreover, the strong Co-ZnO interaction also enhanced the Lewis acidity of the Co/ZnO interface, contributing to the adsorption of LA and the esterification of intermediates. The synergy between the hydrogenation sites and the Lewis acid sites at the Co/ZnO interface enabled the conversion of LA to GVL with high efficiency. In addition, benefiting from the Co-ZnO interfacial interaction as well as the unique carbon-encapsulated structure of the heterojunction catalyst, the recyclability was also greatly improved and the yield of GVL was nearly unchanged even after six cycles.
Collapse