1
|
El-Monem HA, Mahanna H, El-Halwany M, Samy M. Photo-thermal activation of persulfate for the efficient degradation of synthetic and real industrial wastewaters: System optimization and cost estimation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:24153-24162. [PMID: 38436857 PMCID: PMC11289345 DOI: 10.1007/s11356-024-32728-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
The photo-thermal activation of persulfate (PS) was carried out to degrade various pollutants such as reactive blue-222 (RB-222) dye, sulfamethazine, and atrazine. Optimizing the operating parameters showed that using 0.90 g/L of PS at pH 7, temperature of 90 °C, initial dye concentration of 21.60 mg/L, and reaction time of 120 min could attain a removal efficiency of 99.30%. The degradation mechanism was explored indicating that hydroxyl and sulfate radicals were the prevailing reactive species. The degradation percentages of 10 mg/L of sulfamethazine and atrazine were 83.30% and 70.60%, respectively, whereas the mineralization ratio was 63.50% in the case of real textile wastewater under the optimal conditions at a reaction time of 120 min. The treatment cost per 1 m3 of real wastewater was appraised to be 1.13 $/m3 which assured the inexpensiveness of the proposed treatment system. This study presents an effective and low-cost treatment system that can be implemented on an industrial scale.
Collapse
Affiliation(s)
- Hany Abd El-Monem
- Environmental Engineering, Management and Technology, Faculty of Engineering, Mansoura University, Mansoura, 35516, Egypt
| | - Hani Mahanna
- Public Works Engineering Department, Faculty of Engineering, Mansoura University, Mansoura, 35516, Egypt.
| | - Mohamed El-Halwany
- Engineering Mathematics and Physics Department, Faculty of Engineering, Mansoura University, Mansoura, 35516, Egypt
| | - Mahmoud Samy
- Public Works Engineering Department, Faculty of Engineering, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
2
|
Basso Peressut A, Cristiani C, Dotelli G, Dotti A, Latorrata S, Bahamonde A, Gascó A, Hermosilla D, Balzarotti R. Reduced Graphene Oxide/Waste-Derived TiO 2 Composite Membranes: Preliminary Study of a New Material for Hybrid Wastewater Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13061043. [PMID: 36985937 PMCID: PMC10055702 DOI: 10.3390/nano13061043] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/07/2023] [Accepted: 03/11/2023] [Indexed: 06/01/2023]
Abstract
This work reports the preliminary results of the development of composite self-assembling membranes obtained by the combination of reduced graphene oxide (rGO) with commercial Degussa P25 titanium dioxide (TiO2). The purpose is to demonstrate the possibility of combining, in the same self-standing material, the capability to treat wastewater containing both inorganic and organic pollutants by exploiting the established ability of rGO to capture metal ions together with that of TiO2 to degrade organic substances. Moreover, this study also investigates the potential photocatalytic properties of tionite (TIO), to demonstrate the feasibility of replacing commercial TiO2 with such waste-derived TiO2-containing material, fulfilling a circular economy approach. Thus, rGO-TiO2 and rGO-TIO composite membranes, 1:1 by weight, were prepared and characterized by SEM-EDX, XRD, thermogravimetry, as well as by Raman and UV-Vis spectroscopies to verify the effective and homogeneous integration of the two components. Then, they were tested towards 3-mg L-1 aqueous synthetic solutions of Fe3+ and Cu2+ ions to evaluate their metal adsorption ability, with values of the order of 0.1-0.2 mmol gmembrane-1, comparable or even slightly higher than those of pristine rGO. Finally, the ability of the composites to degrade a common organic pesticide, i.e., Imidacloprid®, was assessed in preliminary photocatalysis experiments, in which maximum degradation efficiencies of 25% (after 3 h) for rGO-TiO2 and of 21% (after 1 h) for rGO-TIO were found. The result of tionite-containing membranes is particularly promising and worthy of further investigation, given that the anatase content of tionite is roughly 1/6 of the one in commercial TiO2.
Collapse
Affiliation(s)
- Andrea Basso Peressut
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milan, Italy
| | - Cinzia Cristiani
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milan, Italy
| | - Giovanni Dotelli
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milan, Italy
| | - Anna Dotti
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milan, Italy
| | - Saverio Latorrata
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milan, Italy
| | - Ana Bahamonde
- Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas, Calle de Marie Curie 2, 28049 Madrid, Spain
| | - Antonio Gascó
- Departamento de Ingeniería y Gestión Forestal y Ambiental, Universidad Politécnica de Madrid, Calle de José Antonio Novais 10, 28040 Madrid, Spain
| | - Daphne Hermosilla
- Departamento de Ingeniería y Gestión Forestal y Ambiental, Universidad Politécnica de Madrid, Calle de José Antonio Novais 10, 28040 Madrid, Spain
| | - Riccardo Balzarotti
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Via la Santa 1, 6962 Lugano, Switzerland
| |
Collapse
|
3
|
A Brief Review of Photocatalytic Reactors Used for Persistent Pesticides Degradation. CHEMENGINEERING 2022. [DOI: 10.3390/chemengineering6060089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pesticide pollution is a major issue, given their intensive use in the 20th century, which led to their accumulation in the environment. At the international level, strict regulations are imposed on the use of pesticides, simultaneously with the increasing interest of researchers from all over the world to find methods of neutralizing them. Photocatalytic degradation is an intensively studied method to be applied for the degradation of pesticides, especially through the use of solar energy. The mechanisms of photocatalysis are studied and implemented in pilot and semi-pilot installations on experimental platforms, in order to be able to make this method more efficient and to identify the equipment that can achieve the photodegradation of pesticides with the highest possible yields. This paper proposes a brief review of the impact of pesticides on the environment and some techniques for their degradation, with the main emphasis on different photoreactor configurations, using slurry or immobilized photocatalysts. This review highlights the efforts of researchers to harmonize the main elements of photocatalysis: choice of the photocatalyst, and the way of photocatalyst integration within photoreaction configuration, in order to make the transfer of momentum, mass, and energy as efficient as possible for optimal excitation of the photocatalyst.
Collapse
|
4
|
Recent advances in photochemical-based nanomaterial processes for mitigation of emerging contaminants from aqueous solutions. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02627-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
5
|
Berruti I, Gonçalves NPF, Calza P, Paganini MC, Oller I, Polo-López MI. Natural solar activation of modified zinc oxides with rare earth elements (Ce, Yb) and Fe for the simultaneous disinfection and decontamination of urban wastewater. CHEMOSPHERE 2022; 303:135017. [PMID: 35609667 DOI: 10.1016/j.chemosphere.2022.135017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/02/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
This study investigates the capability of modified zinc oxides (ZnO) with Ce, Yb and Fe towards the simultaneous inactivation of pathogenic bacteria (Escherichia coli, Enterococcus faecalis and Pseudomonas aeruginosa) and Contaminants of Emerging Concern (CECs, Diclofenac, Sulfamethoxazole and Trimethoprim) under natural sunlight. Several catalyst loads (from 0 to 500 mg/L) were assessed as proof-of principle in isotonic solution followed by the evaluation of organic matter effect in simulated and actual urban wastewater (UWW), using bare TiO2-P25 as reference. The order of photocatalysts efficiency for both bacterial and CECs removal was: ZnO-Ce ≅ TiO2-P25 > ZnO-Yb > ZnO-Fe > photolysis > darkness in all water matrices. The best photocatalytic performance for water disinfection and decontamination was obtained with 500 mg/L of ZnO-Ce: 80% of ∑CECs removal after 45 min (4.4 kJ/L of accumulated solar UV-A energy (QUV)) and the total inactivation of bacteria (Detection Limit of 2 CFU/mL) after 120 min (14 kJ/L of QUV) in UWW. The microbial and CECs abatement mechanism was described based on the generation of hydroxyl radicals, which was experimentally demonstrated for ZnO-Ce. Additionally, no significant release of Zn2+ and Ce was detected after the solar exposure. These results point out for the first time the capability of ZnO-Ce for the simultaneous UWW disinfection and decontamination under natural sunlight.
Collapse
Affiliation(s)
- Ilaria Berruti
- CIEMAT-PSA, Carretera de Senés Km 4, 04200, Tabernas, Almería, Spain.
| | - Nuno P F Gonçalves
- Department of Chemistry, Università di Torino, Via Giuria 7, 10125, Torino, Italy.
| | - Paola Calza
- Department of Chemistry, Università di Torino, Via Giuria 7, 10125, Torino, Italy.
| | | | - Isabel Oller
- CIEMAT-PSA, Carretera de Senés Km 4, 04200, Tabernas, Almería, Spain; CIESOL, Joint Centre of the University of Almería-CIEMAT, 04120, Almería, Spain.
| | - Maria Inmaculada Polo-López
- CIEMAT-PSA, Carretera de Senés Km 4, 04200, Tabernas, Almería, Spain; CIESOL, Joint Centre of the University of Almería-CIEMAT, 04120, Almería, Spain.
| |
Collapse
|