1
|
Abrokwah RY, Ntow EB, Jennings T, Stevens-Boyd R, Hossain T, Swain J, Bepari S, Hassan S, Mohammad N, Kuila D. Cr and CeO 2 promoted Ni/SBA-15 framework for hydrogen production by steam reforming of glycerol. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:120945-120962. [PMID: 37947933 DOI: 10.1007/s11356-023-30748-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023]
Abstract
Ni/SBA-15 meso-structured catalysts modified with chromium and CeO2 (Ni-Cr-CeO2/SBA-15) were utilized to produce hydrogen from glycerol steam reforming (GSR). The catalysts were synthesized by a one-pot hydrothermal process and extensively characterized by analytical techniques such as N2 adsorption-desorption (BET), H2-temperature programmed reduction (H2-TPR), powder X-ray diffraction (PXRD), inductively coupled plasma-optical emission spectrometry (ICP-OES), and transmission electron microscopy (TEM). The low-angle XRD reflections affirmed that the catalysts were crystalline and possessed a 2D-ordered porosity. The BET results depicted that all the catalysts exhibited a good surface area ranging from 633 to 792m2/g, and the pore sizes were consistently in the mesoporous range (between 3 and 5 nm). TEM analysis of both calcined and spent catalysts revealed that the metal active sites were embedded in the hybrid CeO2-SiO2 support. Overall, the Ni-based catalysts exhibited higher glycerol conversion -12Ni-SBA-15-99.9%, 12Ni3CeO2-SBA-15-89.4%, and 8Ni4Cr3CeO2-SBA-15-99.7%. Monometallic 12Ni/SBA-15 performed exceptionally well, while 12Cr/SBA-15 performed poorly with the highest 71.48% CO selectivity. For short-term GSR reactions, CeO2 addition to 12Ni/SBA-15 did not have any effect, whereas Cr addition resulted in a 32% decrease in H2 selectivity. The long-term stability studies of 12Ni-SBA-15 showed H2 selectivity of ~ 64% and ~ 98% glycerol conversion. However, its activity was short-lived. After 20-30 h, the H2 selectivity and conversion dropped precipitously to 40%. The doping of mesoporous Ni/SBA-15 with Cr and CeO2 remarkably enhanced the long-term stability of the catalyst for 12Ni3CeO2-SBA-15, and 8Ni4Cr3CeO2-SBA-15 catalyst which showed ~ 58% H2 selectivity and ~ 100% conversion for the entire 60 h. Interestingly, Cr and CeO2 seem to improve the shelf-life of Ni-SBA-15 via different mechanistic pathways. CeO2 mitigated Ni poisoning through coke oxidation whereas Cr bolstered the catalyst stability via maintaining a well-defined pore size, structural rigidity, and integrity of the heterogeneous framework, thereby restricting structural collapse, and hence retard sintering of the Ni active sites during the long-term 60 h of continuous reaction. Hydrogen generation from renewable biomass like glycerol could potentially serve as a sustainable energy source and could substantially help reduce the carbon footprint of the environment.
Collapse
Affiliation(s)
- Richard Y Abrokwah
- Chemistry Department, North Carolina A&T State University, Greensboro, NC, 27411, USA.
- Applied Sciences and Technology, North Carolina A&T State University, Greensboro, NC, 27411, USA.
| | - Eric B Ntow
- Chemistry Department, North Carolina A&T State University, Greensboro, NC, 27411, USA
| | - Terrence Jennings
- Chemistry Department, North Carolina A&T State University, Greensboro, NC, 27411, USA
| | - Robert Stevens-Boyd
- Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, Greensboro, NC, 27411, USA
| | - Tashfin Hossain
- Chemistry Department, North Carolina A&T State University, Greensboro, NC, 27411, USA
| | - John Swain
- Chemistry Department, North Carolina A&T State University, Greensboro, NC, 27411, USA
| | - Sujoy Bepari
- Chemistry Department, North Carolina A&T State University, Greensboro, NC, 27411, USA
| | - Saif Hassan
- Chemistry Department, North Carolina A&T State University, Greensboro, NC, 27411, USA
| | - Nafeezuddin Mohammad
- Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, Greensboro, NC, 27411, USA
| | - Debasish Kuila
- Chemistry Department, North Carolina A&T State University, Greensboro, NC, 27411, USA
- Applied Sciences and Technology, North Carolina A&T State University, Greensboro, NC, 27411, USA
- Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, Greensboro, NC, 27411, USA
| |
Collapse
|
2
|
Chai K, Shen R, Qi T, Chen J, Su W, Su A. Continuous-Flow Hydrogenation of Nitroaromatics in Microreactor with Mesoporous Pd@SBA-15. Processes (Basel) 2023. [DOI: 10.3390/pr11041074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
The hydrogenation of nitroaromatics to prepare aromatic amines plays a crucial role in the chemical industry. Traditional hydrogenation has the risk of hydrogen leakage from the equipment, and its catalyst has the disadvantage of being easily deactivated and difficult to recover. In this study, we designed an efficient and stable mesoporous catalyst, Pd@SBA-15, which was constructed by impregnating the nanopores of the mesoporous material SBA-15 with palladium nanoparticles. The catalyst was then filled in a micro-packed-bed reactor (MPBR) for continuous flow hydrogenation. The designed continuous flow hydrogenation system has two distinctive features. First, we used mesoporous Pd@SBA-15 instead of the traditional bulk Pd/C as the hydrogenation catalyst, which is more suitable for exposing the active sites of metal Pd and reducing the agglomeration of nanometals. The highly ordered porous structure enhances hydrogen adsorption and thus hydrogenation efficiency. Secondly, the continuous flow system allows for precise detection and control of the reaction process. The highly efficient catalysts do not require complex post-treatment recovery, which continues to operate for 24 h with barely any reduction in activity. Due to the high catalytic activity, the designed mesoporous Pd@SBA-15 showed excellent catalytic performance as a hydrogenation catalyst in a continuous flow system with 99% conversion of nitroaromatics in 1 min. This work provides insights into the rational design of hydrogenation systems in the chemical industry.
Collapse
Affiliation(s)
- Kejie Chai
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
- Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Runqiu Shen
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
- Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Tingting Qi
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
- Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianli Chen
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
- College of New Materials Engineering, Jiaxing Nanhu University, Jiaxing 314000, China
| | - Weike Su
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
- Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - An Su
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
4
|
Arslan M, Bepari S, Abrokwah R, Mohammad N, Shajahan J, Kuila D. Effect of Al2O3 Support on Co-Based SiO2 Core–Shell Catalysts for Fischer–Tropsch Synthesis in 3D Printed SS Microchannel Microreactor. Top Catal 2022. [DOI: 10.1007/s11244-022-01733-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
5
|
Mohammad N, Aravamudhan S, Kuila D. Atomic Layer Deposition of Cobalt Catalyst for Fischer-Tropsch Synthesis in Silicon Microchannel Microreactor. NANOMATERIALS 2022; 12:nano12142425. [PMID: 35889650 PMCID: PMC9320865 DOI: 10.3390/nano12142425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022]
Abstract
In recent years, rising environmental concerns have led to the focus on some of the innovative alternative technologies to produce clean burning fuels. Fischer–Tropsch (FT) synthesis is one of the alternative chemical processes to produce synthetic fuels, which has a current research focus on reactor and catalyst improvements. In this work, a cobalt nanofilm (~4.5 nm), deposited by the atomic layer deposition (ALD) technique in a silicon microchannel microreactor (2.4 cm long × 50 µm wide × 100 µm deep), was used as a catalyst for atmospheric Fischer–Tropsch (FT) synthesis. The catalyst film was characterized by XPS, TEM-EDX, and AFM studies. The data from AFM and TEM clearly showed the presence of polygranular cobalt species on the silicon wafer. The XPS studies of as-deposited and reduced cobalt nanofilm in silicon microchannels showed a shift on the binding energies of Co 2p spin splits and confirmed the presence of cobalt in the Co0 chemical state for FT synthesis. The FT studies using the microchannel microreactor were carried out at two different temperatures, 240 °C and 220 °C, with a syngas (H2:CO) molar ratio of 2:1. The highest CO conversion of 74% was observed at 220 °C with the distribution of C1–C4 hydrocarbons. The results showed no significant selectivity towards butane at the higher temperature, 240 °C. The deactivation studies were performed at 220 °C for 60 h. The catalyst exhibited long-term stability, with only ~13% drop in the CO conversion at the end of 60 h. The deactivated cobalt film in the microchannels was investigated by XPS, showing a weak carbon peak in the XPS spectra.
Collapse
Affiliation(s)
- Nafeezuddin Mohammad
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, Greensboro, NC 27401, USA; (N.M.); (S.A.)
| | - Shyam Aravamudhan
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, Greensboro, NC 27401, USA; (N.M.); (S.A.)
| | - Debasish Kuila
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, Greensboro, NC 27401, USA; (N.M.); (S.A.)
- Department of Chemistry, North Carolina A&T State University, Greensboro, NC 27411, USA
- Correspondence:
| |
Collapse
|
6
|
Thermochemical Analysis of a Packed-Bed Reactor Using Finite Elements with FlexPDE and COMSOL Multiphysics. Processes (Basel) 2022. [DOI: 10.3390/pr10061144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
This work presents the thermochemical analysis of a packed-bed reactor via multi-dimensional CFD modeling using FlexPDE and COMSOL Multiphysics. The temperature, concentration, and reaction rate profiles for methane production following the Fischer–Tropsch (F-T) synthesis were studied. To this end, stationary and dynamic differential equations for mass and heat transfer were solved via the finite element technique. The transport equations for 1-D and 2-D models using FlexPDE consider dispersion models, where the fluid and the catalyst can be treated as either homogeneous or heterogenous systems depending on the gradient extents. On the other hand, the 3-D model obtained in COMSOL deems the transport equations incorporated in the Porous Media module. The aim was to compare the FlexPDE and COMSOL models, and to validate them with experimental data from literature. As a result, all models were in good agreement with experimental data, especially for the 2-D and 3-D dynamic models. In terms of kinetics, the predicted reaction rate profiles from the COMSOL model and the 2-D dynamic model followed the temperature trend, thus reflecting the temperature dependence of the reaction. Based on these findings, it was demonstrated that applying different approaches for the CFD modeling of F-T processes conducts reliable results.
Collapse
|