1
|
Li P, Sun Y, Wen H, Qi X, Zhang Y, Sun D, Liu C, Li Y. Transcriptomic Analysis Reveals Dynamics of Gene Expression in Liver Tissue of Spotted Sea Bass Under Acute Thermal Stress. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:1336-1349. [PMID: 39432208 DOI: 10.1007/s10126-024-10375-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024]
Abstract
The spotted sea bass (Lateolabrax maculatus), a eurythermal species, exhibits strong adaptability to temperature variations and presents an ideal model for studying heat stress-responsive mechanisms in fish. This study examined the liver transcriptome of spotted sea bass over a 24-h period following exposure to elevated temperatures, rising from 25 to 32 °C. The results revealed significant alterations in gene expression in response to this thermal stress. Specifically, we identified 1702, 1199, 3128, and 2636 differentially expressed genes at 3, 6, 12, and 24 h post-stress, respectively. Weighted Gene Co-expression Network Analysis (WGCNA) was used to identify specific gene modules responsive to heat stress, containing hub genes such as aco2, eci2, h6pd, suclg1, fgg, fga, fgb, f2, and apoba, which play central roles in the heat stress response. Enrichment analyses via KEGG and GSEA indicated that upregulated differentially expressed genes (DEGs) are predominantly involved in protein processing in the endoplasmic reticulum, while downregulated genes are primarily associated with the AGE-RAGE signaling pathways. Additionally, 272 genes exhibited differential alternative splicing, primarily through exon skipping, underscoring the complexity of transcriptomic adaptations. These findings provide deeper insights into the molecular responses to thermal stress and are crucial for advancing the breeding of heat-resistant strains of spotted sea bass.
Collapse
Affiliation(s)
- Pengyu Li
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, 266003, China
| | - Yalong Sun
- University of Maryland Baltimore County, Baltimore, MD, USA
| | - Haishen Wen
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, 266003, China
| | - Xin Qi
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, 266003, China
| | - Yonghang Zhang
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, 266003, China
| | - Donglei Sun
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, 266003, China
| | - Cong Liu
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, 266003, China
| | - Yun Li
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, 266003, China.
- Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266100/572025, Shandong/Sanya, Hainan, China.
| |
Collapse
|
2
|
Ramírez-Calero S, Paula JR, Otjacques E, Ravasi T, Rosa R, Schunter C. Neuromolecular responses in disrupted mutualistic cleaning interactions under future environmental conditions. BMC Biol 2023; 21:258. [PMID: 37957664 PMCID: PMC10644551 DOI: 10.1186/s12915-023-01761-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Mutualistic interactions, which constitute some of the most advantageous interactions among fish species, are highly vulnerable to environmental changes. A key mutualistic interaction is the cleaning service rendered by the cleaner wrasse, Labroides dimidiatus, which involves intricate processes of social behaviour to remove ectoparasites from client fish and can be altered in near-future environmental conditions. Here, we evaluated the neuromolecular mechanisms behind the behavioural disruption of cleaning interactions in response to future environments. We subjected cleaner wrasses and surgeonfish (Acanthurus leucosternon, serving as clients) to elevated temperature (warming, 32 °C), increased levels of CO2 (high CO2, 1000 ppm), and a combined condition of elevated CO2 and temperature (warming and high CO2, 32 °C, and 1000 ppm) for 28 days. RESULTS Each of these conditions resulted in behavioural disruptions concerning the motivation to interact and the quality of interaction (high CO2 - 80.7%, warming - 92.6%, warming and high CO2 - 79.5%, p < 0.001). Using transcriptomics of the fore-, mid-, and hindbrain, we discovered that most transcriptional reprogramming in both species under warming conditions occurred primarily in the hind- and forebrain. The associated functions under warming were linked to stress, heat shock proteins, hypoxia, and behaviour. In contrast, elevated CO2 exposure affected a range of functions associated with GABA, behaviour, visual perception, thyroid hormones and circadian rhythm. Interestingly, in the combined warming and high CO2 condition, we did not observe any expression changes of behaviour. However, we did find signs of endoplasmic reticulum stress and apoptosis, suggesting not only an additive effect of the environmental conditions but also a trade-off between physiological performance and behaviour in the cleaner wrasse. CONCLUSIONS We show that impending environmental shifts can affect the behaviour and molecular processes that sustain mutualistic interactions between L. dimidiatus and its clients, which could have a cascading effect on their adaptation potential and possibly cause large-scale impacts on coral reef ecosystems.
Collapse
Affiliation(s)
- S Ramírez-Calero
- The Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Pokfulam Rd, Hong Kong SAR, China
- Departament de Biologia Marina, Institut de Ciències del Mar (CSIC), Pg. Marítim de La Barceloneta 37-49, Barcelona, Spain
| | - J R Paula
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Av. Nossa Senhora Do Cabo, 939, 2750-374, Cascais, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| | - E Otjacques
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Av. Nossa Senhora Do Cabo, 939, 2750-374, Cascais, Portugal
- Carnegie Institution for Science, Division of Biosphere Sciences and Engineering, Church Laboratory, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, 91125, USA
- Department of Life Sciences, MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, University of Coimbra, 3000-456, Coimbra, Portugal
| | - T Ravasi
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-Son, Okinawa, 904-0495, Japan
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
| | - R Rosa
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Av. Nossa Senhora Do Cabo, 939, 2750-374, Cascais, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| | - C Schunter
- The Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Pokfulam Rd, Hong Kong SAR, China.
| |
Collapse
|
3
|
Cheng CH, Tian Y, Ma HL, Liu GX, Fan SG, Deng YQ, Jiang JJ, Feng J, Guo ZX. Essential role of the HSC70 in the mud crab Scylla paramamosain in response to Vibrio parahaemolyticus infection. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109078. [PMID: 37716494 DOI: 10.1016/j.fsi.2023.109078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
Heat shock proteins play an important role in host defense, and modulate immune responses against pathogen infection. In this study, a novel HSC70 from the mud crab (designated as SpHSC70) was cloned and characterized. The full length of SpHSC70 contained a 58 bp 5'untranslated region (UTR), an open reading frame (ORF) of 2,046 bp and a 3'UTR of 341 bp. The SpHSC70 protein included the conserved DnaK motif. The mRNA of SpHSC70 was highly expressed in the hemocytes, heart and hepatopancreas, and lowly expressed in the intestine. The subcellular localization results indicated that SpHSC70 was localized in both the cytoplasm and the nucleus. Moreover, SpHSC70 was significantly responsive to bacterial challenge. RNA interference experiment was designed to investigate the roles of SpHSC70 in response to bacterial challenge. V. parahaemolyticus infection induced the expression levels of SpPO, SpHSP70, SpSOD and SpCAT. Knocking down SpHSC70 in vivo can decrease the expression of these genes after V. parahaemolyticus infection. These results suggested that SpHSC70 could play a vital role in defense against V. parahaemolyticus infection via activating the immune response and antioxidant defense signaling pathways in the mud crab.
Collapse
Affiliation(s)
- Chang-Hong Cheng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China.
| | - Yu Tian
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China
| | - Hong-Ling Ma
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China
| | - Guang-Xin Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China
| | - Si-Gang Fan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China
| | - Yi-Qin Deng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China
| | - Jian-Jun Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China
| | - Juan Feng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China
| | - Zhi-Xun Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China.
| |
Collapse
|
4
|
Panteli N, Demertzioglou M, Feidantsis K, Karapanagiotis S, Tsele N, Tsakoniti K, Gkagkavouzis K, Mylonas CC, Kormas KA, Mente E, Antonopoulou E. Advances in understanding the mitogenic, metabolic, and cell death signaling in teleost development: the case of greater amberjack (Seriola dumerili, Risso 1810). FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1665-1684. [PMID: 36459361 DOI: 10.1007/s10695-022-01146-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Cell growth and differentiation signals of insulin-like growth factor-1 (IGF-1), a key regulator in embryonic and postnatal development, are mediated through the IGF-1 receptor (IGF-1R), which activates several downstream pathways. The present study aims to address crucial organogenesis and development pathways including Akt, MAPKs, heat shock response, apoptotic and autophagic machinery, and energy metabolism in relation to IGF-1R activation during five developmental stages of reared Seriola dumerili: 1 day prior to hatching fertilized eggs (D-1), hatching day (D0), 3 days post-hatching larvae (D3), 33 (D33) and 46 (D46) days post-hatching juveniles. During both the fertilized eggs stage and larval-to-juvenile transition, IGF-1R/Akt pathway activation may mediate the hypertrophic signaling, while p44/42 MAPK phosphorylation was apparent at S. dumerili post-hatching processes and juvenile organs completion. On the contrary, apoptosis was induced during embryogenesis and autophagy at hatching day indicating a potential involvement in morphogenetic rearrangements and yolk-sac reserves depletion. Larvae morphogenesis was accompanied by a metabolic turnover with increased substantial energy consumption. The findings of the present study demonstrate the developmental stages-specific shift in critical signaling pathways during the ontogeny of reared S. dumerili.
Collapse
Affiliation(s)
- Nikolas Panteli
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Maria Demertzioglou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Konstantinos Feidantsis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | | | | | | | - Konstantinos Gkagkavouzis
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
- Genomics and Epigenomics Translational Research (GENeTres), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Buildings A & B 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001, Thessaloniki, Greece
| | - Constantinos C Mylonas
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, P.O. Box 2214, 71003, Heraklion, Crete, Greece
| | - Konstantinos Ar Kormas
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, 38446, Volos, Greece
| | - Eleni Mente
- School of Veterinary Medicine, Laboratory of Ichthyology-Culture and Pathology of Aquatic Animals, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Efthimia Antonopoulou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| |
Collapse
|
5
|
Liu Z, Ma F, Kang Y, Liu X. Gene ssa-miR-301a-3p improves rainbow trout ( Oncorhynchus mykiss) resistance to heat stress by targeting hsp90b2. PeerJ 2022; 10:e13476. [PMID: 35811807 PMCID: PMC9266697 DOI: 10.7717/peerj.13476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 05/01/2022] [Indexed: 01/17/2023] Open
Abstract
Rainbow trout (Oncorhynchus mykiss) is a cold-water fish that is commonly harmed by high temperatures. MicroRNAs (miRNAs) are being investigated intensively because they act as essential metabolic regulators and have a role in the heat stress response. Although there have been numerous studies on rainbow trout heat stress, research on miRNA implicated in rainbow trout heat stress is quite restricted. Rainbow trout were sampled at 18 and 24 °C, respectively, to examine the mechanism of miRNA under heat stress, and we identified a heat stress-induced miRNA, ssa-miR-301a-3p, for further investigation based on our bioinformatics analysis of rainbow trout small RNA sequencing data. Bioinformatics research suggested that hsp90b2 is a probable target gene for ssa-miR-301a-3p. QRT-PCR was used to confirm the expression levels of ssa-miR-301a-3p and hsp90b2. Meanwhile, the dual-luciferase reporter assay was employed to validate the ssa-miR-301a-3p-hsp90b2 targeted connection. The results indicated that at 24 °C, the relative expression of ssa-miR-301a-3p was considerably lower than at 18 °C. On the other hand, hsp90b2 expression, followed the opposite pattern. The binding of ssa-miR-301a-3p to the 3'-UTR of hsp90b2 resulted in a substantial decrease in luciferase activity. The findings showed that ssa-miR-301a-3p was implicated in heat stress, and our findings provide fresh insights into the processes of miRNA in response to heat stress in rainbow trout.
Collapse
Affiliation(s)
- Zhe Liu
- Gansu Agricultural University, Lanzhou, China
| | - Fang Ma
- Tianshui Normal University, Tianshui, China
| | - Yujun Kang
- Gansu Agricultural University, Lanzhou, China
| | - Xiaoxia Liu
- Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
6
|
Comparative transcriptome analysis of differentially expressed genes and pathways in Procambarus clarkii (Louisiana crawfish) at different acute temperature stress. Genomics 2022; 114:110415. [PMID: 35718088 DOI: 10.1016/j.ygeno.2022.110415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/09/2022] [Accepted: 06/13/2022] [Indexed: 11/22/2022]
Abstract
Procambarus clarkii is an important economic species in China, and exhibit heat and cold tolerance in the main culture regions. To understand the mechanisms, we analyzed the hepatopancreas transcriptome of P. clarkii treated at 10 °C, 25 °C, and 30 °C, then 2092 DEGs and 6929 DEGs were found in 30 °C stress group and 10 °C stress group, respectively. KEGG pathway enrichment results showed that immune pathway is the main stress pathway for 10 °C treatment and metabolic pathway is the main response pathway for 30 °C treatment, which implies low temperature stress induces the damage of the immune system and increases the susceptibility of bacteria while the body response to high temperature stress through metabolic adjustment. In addition, flow cytometry proved that both high and low temperature stress caused different degrees of apoptosis of hemocytes, and dynamic transcription heat map analysis also identified the differential expression of HSPs family genes and apoptosis pathway genes under different heat stresses. This indicates that preventing damaged protein misfolding and accelerating cell apoptosis are necessary mechanisms for P. clarkii to cope with high and low temperature stress. Our research has deepened our understanding of the complex molecular mechanisms of P. clarkii in response to acute temperature stress, and provided a potential strategy for aquatic animals to relieve environmental duress.
Collapse
|
7
|
Label-free quantification of protein expression in the rainbow trout (Oncorhynchus mykiss) in response to short-term exposure to heat stress. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 30:158-168. [PMID: 30851505 DOI: 10.1016/j.cbd.2019.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/21/2019] [Accepted: 02/26/2019] [Indexed: 12/25/2022]
Abstract
Rainbow trout (Oncorhynchus mykiss) are a cold-water salmonid species that is highly susceptible to heat stress. Summer temperature stress is a common issue in trout aquaculture. To better understand the molecular mechanisms of the heat-stress response in the trout, we used label-free quantitative proteome techniques to identify differentially expressed proteins in the livers of rainbow trout exposed to heat stress. We identified 3362 proteins and 152 differentially expressed proteins (p < 0.05; fold-change >2). Of these, 37 were uniquely expressed in the heat-stress group and 35 were uniquely expressed in the control group. In addition, 42 proteins were significantly upregulated (fold-change >2) and 38 proteins were significantly downregulated (fold-change >2). GO (Gene Ontology) analysis indicated that these differentially expressed proteins were primarily expressed in the nucleus, extracellular matrix, and cytoplasm, and were associated with a variety of functions, including protein binding/bridging and enzyme facilitation. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis of the differentially expressed proteins showed that, during high temperature stress, many biological processes were extensively altered, particularly the estrogen signaling pathway, the complement and coagulation cascades, and the platelet activation pathway. Our study focused on the identification of a systematic approach for the characterization of regulatory networks. Our results provide a framework for further studies of the heat-stress response in fish.
Collapse
|
8
|
Acclimation capacity of the cardiac HSP70 and HSP90 response to thermal stress in lake trout (Salvelinus namaycush), a stenothermal ice-age relict. Comp Biochem Physiol B Biochem Mol Biol 2018; 224:53-60. [DOI: 10.1016/j.cbpb.2017.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 11/18/2022]
|
9
|
Shape-Shifted Red Blood Cells: A Novel Red Blood Cell Stage? Cells 2018; 7:cells7040031. [PMID: 29671811 PMCID: PMC5946108 DOI: 10.3390/cells7040031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/11/2018] [Accepted: 04/14/2018] [Indexed: 01/06/2023] Open
Abstract
Primitive nucleated erythroid cells in the bloodstream have long been suggested to be more similar to nucleated red cells of fish, amphibians, and birds than the red cells of fetal and adult mammals. Rainbow trout Ficoll-purified red blood cells (RBCs) cultured in vitro undergo morphological changes, especially when exposed to stress, and enter a new cell stage that we have coined shape-shifted RBCs (shRBCs). We have characterized these shRBCs using transmission electron microscopy (TEM) micrographs, Wright–Giemsa staining, cell marker immunostaining, and transcriptomic and proteomic evaluation. shRBCs showed reduced density of the cytoplasm, hemoglobin loss, decondensed chromatin in the nucleus, and striking expression of the B lymphocyte molecular marker IgM. In addition, shRBCs shared some features of mammalian primitive pyrenocytes (extruded nucleus surrounded by a thin rim of cytoplasm and phosphatidylserine (PS) exposure on cell surface). These shRBCs were transiently observed in heat-stressed rainbow trout bloodstream for three days. Functional network analysis of combined transcriptomic and proteomic studies resulted in the identification of proteins involved in pathways related to the regulation of cell morphogenesis involved in differentiation, cellular response to stress, and immune system process. In addition, shRBCs increased interleukin 8 (IL8), interleukin 1 β (IL1β), interferon ɣ (IFNɣ), and natural killer enhancing factor (NKEF) protein production in response to viral hemorrhagic septicemia virus (VHSV). In conclusion, shRBCs may represent a novel cell stage that participates in roles related to immune response mediation, homeostasis, and the differentiation and development of blood cells.
Collapse
|
10
|
Chadwick JG, McCormick SD. Upper thermal limits of growth in brook trout and their relationship to stress physiology. J Exp Biol 2017; 220:3976-3987. [DOI: 10.1242/jeb.161224] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 08/25/2017] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Despite the threat of climate change, the physiological mechanisms responsible for reduced performance at high temperatures remain unclear for most species. Elevated but sublethal temperatures may act via endocrine and cellular stress responses to limit performance in important life-history traits such as growth. Here, brook trout (Salvelinus fontinalis) subjected to chronically elevated or daily oscillating temperatures were monitored for growth and physiological stress responses. Growth rate decreased at temperatures above 16°C and was negative at 24°C, with an estimated upper limit for positive growth of 23.4°C. Plasma cortisol increased with temperature and was 12- and 18-fold higher at 22 and 24°C, respectively, than at 16°C, whereas plasma glucose was unaffected by temperature. Abundance of heat shock protein 70 (HSP70) in the gill increased with temperature and was 11- and 56-fold higher at 22°C and 24°C, respectively, than at 16°C. There was no relationship between temperature and plasma Cl−, but there was a 53% and 80% decrease in gill Na+/K+-ATPase activity and abundance at 24°C in comparison with 16°C. Daily temperature oscillations of 4°C or 8°C (19–23°C or 17–25°C) were compared with 21°C controls. Growth rate decreased with temperature and was 43% and 35% lower by length and mass, respectively, in the 8°C daily oscillation treatment than in the controls. There was no effect of temperature oscillation on plasma cortisol or glucose levels. In contrast, gill HSP70 abundance increased with increasing daily oscillation and was 40- and 700-fold greater at 4°C and 8°C daily oscillation, respectively, than in the constant temperature controls. In individuals exposed to 17–25°C diel oscillations for 4 days and then allowed to recover at 21°C, gill HSP70 abundance was still elevated after 4 days recovery, but not after 10 days. Our results demonstrate that elevated temperatures induce cellular and endocrine stress responses and provide a possible mechanism by which growth is limited at elevated temperatures. Temperature limitations on growth may play a role in driving brook trout distributions in the wild.
Collapse
Affiliation(s)
- Joseph G. Chadwick
- Graduate Program in Organismic & Evolutionary Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Stephen D. McCormick
- Graduate Program in Organismic & Evolutionary Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
- U.S. Geological Survey, Leetown Science Center, Conte Anadromous Fish Research Laboratory, One Migratory Way, Turners Falls, MA 01376, USA
| |
Collapse
|
11
|
Chadwick JG, Nislow KH, McCormick SD. Thermal onset of cellular and endocrine stress responses correspond to ecological limits in brook trout, an iconic cold-water fish. CONSERVATION PHYSIOLOGY 2015; 3:cov017. [PMID: 27293702 PMCID: PMC4778472 DOI: 10.1093/conphys/cov017] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 03/13/2015] [Accepted: 03/16/2015] [Indexed: 05/23/2023]
Abstract
Climate change is predicted to change the distribution and abundance of species, yet underlying physiological mechanisms are complex and methods for detecting populations at risk from rising temperature are poorly developed. There is increasing interest in using physiological mediators of the stress response as indicators of individual and population-level response to environmental stressors. Here, we use laboratory experiments to show that the temperature thresholds in brook trout (Salvelinus fontinalis) for increased gill heat shock protein-70 (20.7°C) and plasma glucose (21.2°C) are similar to their proposed thermal ecological limit of 21.0°C. Field assays demonstrated increased plasma glucose, cortisol and heat shock protein-70 concentrations at field sites where mean daily temperature exceeded 21.0°C. Furthermore, population densities of brook trout were lowest at field sites where temperatures were warm enough to induce a stress response, and a co-occurring species with a higher thermal tolerance showed no evidence of physiological stress at a warm site. The congruence of stress responses and proposed thermal limits supports the use of these thresholds in models of changes in trout distribution under climate change scenarios and suggests that the induction of the stress response by elevated temperature may play a key role in driving the distribution of species.
Collapse
Affiliation(s)
- Joseph G. Chadwick
- Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Conte Anadromous Fish Research Center, USGS, One Migratory Way, Turners Falls, MA 01376, USA
| | - Keith H. Nislow
- Northern Research Station, US Forest Service, University of Massachusetts, Amherst, MA 01003, USA
| | - Stephen D. McCormick
- Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Conte Anadromous Fish Research Center, USGS, One Migratory Way, Turners Falls, MA 01376, USA
| |
Collapse
|
12
|
Mohindra V, Tripathi RK, Yadav P, Singh RK, Lal KK. Hypoxia induced altered expression of heat shock protein genes (Hsc71, Hsp90α and Hsp10) in Indian Catfish, Clarias batrachus (Linnaeus, 1758) under oxidative stress. Mol Biol Rep 2015; 42:1197-209. [PMID: 25663092 DOI: 10.1007/s11033-015-3855-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 01/28/2015] [Indexed: 11/24/2022]
Abstract
Heat shock proteins (Hsps) are typically associated with stress response and tolerance. The Indian catfish, Clarias batrachus, is a freshwater air-breathing hypoxia tolerant teleost and is potentially important catfish species for aquaculture and for its economic value as food. The present study aimed at determining the transcriptional response of three Hsps, CbHsc71, CbHsp90α and CbHsp10 in hypoxia tolerant Indian catfish, C. batrachus, under experimental and natural hypoxia. The expression profile of above three genes were studied under different periods of hypoxia, through qRT-PCR. Primers were designed from ESTs obtained through SSH libraries constructed from hypoxia treated fishes. The Hsp10 ESTs and deduced protein was in silico characterized for its ORF and for its physical and chemical properties, respectively, using GeneScan, blastp, scanprosite, superfamily and other softwares. A phylogenetic tree was constructed based on deduced amino acid sequences of Hsc71, Hsp90α, Hsp90β of Homo sapiens and other fishes along with CbHsp10 protein in MEGA4. The deduced protein sequences of CbHsp10 was found to have characteristic Hsp10 family signatures, and it is proposed for inclusion of methionine in the consensus sequences of Hsp10 family signature, after the "proline" residue. At transcription level, these genes were found to be differentially regulated under hypoxia stress, in different tissues of C. batrachus. The CbHsc71 and CbHsp90α were up-regulated after short and long-term hypoxia, whereas CbHsp10 was significantly down-regulated after short-term hypoxia. The differential expression of these Hsps may play a role in protection and survival under hypoxia induced oxidative stress in C. batrachus.
Collapse
Affiliation(s)
- Vindhya Mohindra
- National Bureau of Fish Genetic Resources (ICAR), Canal Ring Road, P. O. Dilkusha, Lucknow, 226002, UP, India,
| | | | | | | | | |
Collapse
|
13
|
Ricketts CD, Bates WR, Reid SD. The effects of acute waterborne exposure to sublethal concentrations of molybdenum on the stress response in rainbow trout, Oncorhynchus mykiss. PLoS One 2015; 10:e0115334. [PMID: 25629693 PMCID: PMC4309612 DOI: 10.1371/journal.pone.0115334] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 11/21/2014] [Indexed: 11/18/2022] Open
Abstract
To determine if molybdenum (Mo) is a chemical stressor, fingerling and juvenile rainbow trout (Oncorhynchus mykiss) were exposed to waterborne sodium molybdate (0, 2, 20, or 1,000 mg l-1 of Mo) and components of the physiological (plasma cortisol, blood glucose, and hematocrit) and cellular (heat shock protein [hsp] 72, hsp73, and hsp90 in the liver, gills, heart, and erythrocytes and metallothionein [MT] in the liver and gills) stress responses were measured prior to initiation of exposure and at 8, 24, and 96 h. During the acute exposure, plasma cortisol, blood glucose, and hematocrit levels remained unchanged in all treatments. Heat shock protein 72 was not induced as a result of exposure and there were no detectable changes in total hsp70 (72 and 73), hsp90, and MT levels in any of the tissues relative to controls. Both fingerling and juvenile fish responded with similar lack of apparent sensitivity to Mo exposure. These experiments demonstrate that exposure to waterborne Mo of up to 1,000 mg l-1 did not activate a physiological or cellular stress response in fish. Information from this study suggests that Mo water quality guidelines for the protection of aquatic life are highly protective of freshwater fish, namely rainbow trout.
Collapse
Affiliation(s)
- Chelsea D. Ricketts
- Department of Biology, Irving K. Barber School of Arts and Sciences, University of British Columbia, Okanagan campus, 3333 University Way, Kelowna, British Columbia, Canada, V1V 1V7
| | - William R. Bates
- Department of Biology, Irving K. Barber School of Arts and Sciences, University of British Columbia, Okanagan campus, 3333 University Way, Kelowna, British Columbia, Canada, V1V 1V7
| | - Scott D. Reid
- Department of Biology, Irving K. Barber School of Arts and Sciences, University of British Columbia, Okanagan campus, 3333 University Way, Kelowna, British Columbia, Canada, V1V 1V7
- * E-mail:
| |
Collapse
|
14
|
Madeira D, Narciso L, Cabral HN, Diniz MS, Vinagre C. Thermal tolerance of the crab Pachygrapsus marmoratus: intraspecific differences at a physiological (CTMax) and molecular level (Hsp70). Cell Stress Chaperones 2012; 17:707-16. [PMID: 22619030 PMCID: PMC3468680 DOI: 10.1007/s12192-012-0345-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 05/02/2012] [Accepted: 05/04/2012] [Indexed: 10/28/2022] Open
Abstract
Temperature is one of the most important variables influencing organisms, especially in the intertidal zone. This work aimed to test physiological and molecular intraspecific differences in thermal tolerance of the crab Pachygrapsus marmoratus (Fabricius, 1787). The comparisons made focused on sex, size, and habitat (estuary and coast) differences. The physiological parameter was upper thermal limit, tested via the critical thermal maximum (CTMax) and the molecular parameter was total heat shock protein 70 (Hsp70 and Hsp70 plus Hsc70) production, quantified via an enzyme-linked imunosorbent assay. Results showed that CTMax values and Hsp70 production are higher in females probably due to different microhabitat use and potentially due to different hormonal regulation in males and females. Among females, non-reproducing ones showed a higher CTMax value, but no differences were found in Hsp70, even though reproducing females showed higher variability in Hsp70 amounts. As reproduction takes up a lot of energy, its allocation for other activities, including stress responses, is lower. Juveniles also showed higher CTMax and Hsp70 expression because they occur in greater shore heights and ageing leads to alterations in protein synthesis. Comparing estuarine and coastal crabs, no differences were found in CTMax but coastal crabs produce more Hsp70 than estuarine crabs because they occur in drier and hotter areas than estuarine ones, which occur in moister environments. This work shows the importance of addressing intraspecific differences in the stress response at different organizational levels. This study shows that these differences are key factors in stress research, climate research, and environmental monitoring.
Collapse
Affiliation(s)
- D Madeira
- Centro de Oceanografia, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisbon, Portugal.
| | | | | | | | | |
Collapse
|
15
|
Chandra K, Bosker T, Hogan N, Lister A, MacLatchy D, Currie S. Sustained high temperature increases the vitellogenin response to 17α-ethynylestradiol in mummichog (Fundulus heteroclitus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 118-119:130-140. [PMID: 22561700 DOI: 10.1016/j.aquatox.2012.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 04/04/2012] [Accepted: 04/04/2012] [Indexed: 05/31/2023]
Abstract
Mummichog (Fundulus heteroclitus), an estuarine fish of the western Atlantic, were acclimated to three salinities (0, 16 or 32 ppt) or three temperatures (10, 20 or 26 °C) and exposed to nominal 50 or 250 ng/L 17α-ethynylestradiol (EE2) for 14 days. In a separate experiment, fish were exposed to the same levels of EE2 and were subjected to a 1h heat shock (20-30 °C) on the 14th day and allowed to recover for 20 h. We were interested in whether or not susceptibility to EE2 exposure, as indicated by increases in vitellogenin (vtg) gene expression would change with high and low salinity, warm or cold temperature acclimation or acute heat shock. We also investigated the potential role of heat shock proteins (HSPs) under these conditions. Liver vtg1 mRNA was significantly induced in male mummichog exposed to 50 and 250 ng/L EE2, but salinity acclimation or acute heat shock did not further affect this induction. Males acclimated to 26 °C and exposed to 250 ng/L EE2 induced 3.5-fold more vtg1 mRNA than EE2 exposed males acclimated to 10 °C. HSP90 and HSP70 protein were largely unaffected by EE2 exposure. Our findings suggest that mummichog are more susceptible to EE2 under sustained temperature increases that may occur seasonally or with warming of coastal waters.
Collapse
Affiliation(s)
- Kavish Chandra
- Department of Biology, Mount Allison University, Sackville, NB E4L 1G7, Canada
| | - Thijs Bosker
- Department of Natural Resources and the Environment, Center for Environmental Sciences and Engineering, University of Connecticut, Storrs, CT, 06269-4087, USA
| | - Natacha Hogan
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, S7N 5A8, Canada
| | - Andrea Lister
- Department of Biology and Canadian Rivers Institute, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| | - Deborah MacLatchy
- Department of Biology and Canadian Rivers Institute, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| | - Suzanne Currie
- Department of Biology, Mount Allison University, Sackville, NB E4L 1G7, Canada.
| |
Collapse
|
16
|
Currie S, Bagatto B, DeMille M, Learner A, LeBlanc D, Marks C, Ong K, Parker J, Templeman N, Tufts BL, Wright PA. Metabolism, nitrogen excretion, and heat shock proteins in the central mudminnow (Umbra limi), a facultative air-breathing fish living in a variable environment. CAN J ZOOL 2010. [DOI: 10.1139/z09-117] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The central mudminnow ( Umbra limi (Kirtland, 1841)) is a continuous, facultative air-breathing freshwater fish found in swamps of central Canada and northeastern USA. The first goal of this field and laboratory-based study was to characterize the physicochemical conditions of mudminnow habitat during the summer. Our second goal was to determine the metabolic, stress response, and nitrogen excretion strategies of this fish following variations in water temperature, dissolved oxygen, external ammonia, and short-term periods of air exposure. We report profound diurnal fluctuations in water temperature (13–31 °C), dissolved oxygen (2%–159% air saturation), and ammonia levels (10–240 μmol·L−1) in habitat of central mudminnow measured on three dates at six different sites over 24 h. The central mudminnow does not induce urea synthesis as a mechanism of ammonia detoxification, either in response to emersion (6 or 20 h) or elevated external ammonia (10 mmol·L–1). Acute exposure to high temperature (~31 °C), aquatic hypoxia, or air resulted in significant increases in blood glucose and liver heat shock protein (Hsp) 70 and hypoxia also caused an increased reliance on anaerobic metabolism. This is the first description of the heat shock response in a facultative air-breathing fish following either hypoxia or air exposure. These metabolic and molecular responses are part of a strategy that allows the mudminnow to thrive in extremely variable freshwater environments.
Collapse
Affiliation(s)
- S. Currie
- Department of Biology, Mount Allison University, Sackville, NB E4L 1G7, Canada
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
- Department of Biology, University of Akron, Akron, OH 44325, USA
- Department of Biology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - B. Bagatto
- Department of Biology, Mount Allison University, Sackville, NB E4L 1G7, Canada
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
- Department of Biology, University of Akron, Akron, OH 44325, USA
- Department of Biology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - M. DeMille
- Department of Biology, Mount Allison University, Sackville, NB E4L 1G7, Canada
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
- Department of Biology, University of Akron, Akron, OH 44325, USA
- Department of Biology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - A. Learner
- Department of Biology, Mount Allison University, Sackville, NB E4L 1G7, Canada
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
- Department of Biology, University of Akron, Akron, OH 44325, USA
- Department of Biology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - D. LeBlanc
- Department of Biology, Mount Allison University, Sackville, NB E4L 1G7, Canada
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
- Department of Biology, University of Akron, Akron, OH 44325, USA
- Department of Biology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - C. Marks
- Department of Biology, Mount Allison University, Sackville, NB E4L 1G7, Canada
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
- Department of Biology, University of Akron, Akron, OH 44325, USA
- Department of Biology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - K. Ong
- Department of Biology, Mount Allison University, Sackville, NB E4L 1G7, Canada
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
- Department of Biology, University of Akron, Akron, OH 44325, USA
- Department of Biology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - J. Parker
- Department of Biology, Mount Allison University, Sackville, NB E4L 1G7, Canada
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
- Department of Biology, University of Akron, Akron, OH 44325, USA
- Department of Biology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - N. Templeman
- Department of Biology, Mount Allison University, Sackville, NB E4L 1G7, Canada
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
- Department of Biology, University of Akron, Akron, OH 44325, USA
- Department of Biology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - B. L. Tufts
- Department of Biology, Mount Allison University, Sackville, NB E4L 1G7, Canada
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
- Department of Biology, University of Akron, Akron, OH 44325, USA
- Department of Biology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - P. A. Wright
- Department of Biology, Mount Allison University, Sackville, NB E4L 1G7, Canada
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
- Department of Biology, University of Akron, Akron, OH 44325, USA
- Department of Biology, Queen’s University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
17
|
Currie S, LeBlanc S, Watters MA, Gilmour KM. Agonistic encounters and cellular angst: social interactions induce heat shock proteins in juvenile salmonid fish. Proc Biol Sci 2009; 277:905-13. [PMID: 19923129 DOI: 10.1098/rspb.2009.1562] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Juvenile salmonid fish readily form dominance hierarchies when faced with limited resources. While these social interactions may result in profound behavioural and physiological stress, it is unknown if this social stress is evident at the level of the cellular stress response--specifically, the induction of stress or heat shock proteins (Hsps). Thus, the goal of our study was to determine if Hsps are induced during hierarchy formation in juvenile rainbow trout (Oncorhynchus mykiss). To this end, we measured levels of three Hsps, Hsp70, Hsc (heat shock cognate)70 and Hsp90 in the white muscle, liver and brain of trout that had been interacting for 36 h, 72 h or 6 days. Our data indicate that Hsps are induced in both dominant and subordinate fish in a time- and tissue-specific manner. In further mechanistic experiments on fasted and cortisol-treated fish, we demonstrated that high plasma cortisol does not affect Hsp induction in trout white muscle or liver, but both conditions may be part of the mechanism for Hsp induction with social stress in the brain. We conclude that the behavioural and physiological stress experienced by juvenile rainbow trout in dominance hierarchies can be extended to the induction of Hsps.
Collapse
Affiliation(s)
- Suzanne Currie
- Department of Biology, Mount Allison University, Sackville, New Brunswick, Canada.
| | | | | | | |
Collapse
|